

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

CST 202 COMPUTER ORGANIZATION AND ARCHITECTURE

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically

competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated

research scientists and intellectual leaders of the country who can spread the beams of light and

happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

 Established in: 2002

 Courses offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering

Professionals to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world

problems with emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and

Engineering through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software

Packages, Web Services, System Tools and Components as per needs and

specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing

environment by learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

COURSE OUTCOMES

SUBJECT CODE: C210

COURSE OUTCOMES

C210.1 K2
Recognize and express the relevance of basic components, I/O

organization and pipelining schemes in a digital computer.

C210.2 K4
Illustrate the design of Arithmetic Logic Unit and explain the usage of

registers in it

C210.3 K5
Explain the implementation aspects of arithmetic algorithms in a digital

computer

C210.4 K3
Demonstrate the control signals required for the execution of a given

instruction and Develop the control logic for a given arithmetic problem

C210.5 K5
Explain the types of memory systems and mapping functions used in

memory systems

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for

Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high

quality System Software Tools and Efficient Web Design Models with a focus on

performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating

hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C210.1 3 3 3 3 - - - - - - - 3

C210.2 3 3 3 3 - - - - - - 3 3

C210.3 3 3 3 - - - - - - - 3 3

C210.4 3 3 3 3 - - - - - - 3 3

C210.5 3 3 3 3 - - - - - - 3 3

C210 3 3 3 3 - - - - - - 3 3

CO PSO MAPPING

CO’S PSO1 PSO2 PSO3

C210.1 - -

C210.2 - - -

C210.3 - - -

C210.4 - - -

C210.5 - - -

C210 - - -

S:NO; TOPIC

1 Von Neumann architecture

2 Computer Organization and Architecture | Pipelining

MODULE NOTES & QUESTION

BANK

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Module I

Qn

No

Question Knowledge

Level

CO

1 Describe phases of instruction execution. K3 CO1

2 List the memory operations K2 CO1

3 Write short notes on single bus operations K3 CO1

4 Explain functional units of computers K5 CO1

5 Explain basic input output operations K5 CO1

6 Explain single bus organization with neat diagram K5 CO1

7 Write short notes on 1. MAR 2. MDR 3. PC K3 CO1

8 Discuss different addressing modes K4 CO1

9 Discuss Memory addressability K4 CO1

10 Discuss Connection between processor and memory K4 CO1

11 Differentiate between Big endian and Little endian addressing K4 CO1

12 Describe basic instruction types K3 CO1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Module II

Qn

No

Question Knowledge

Level

CO

1 Explain the design of 4 bit Arithmetic circuit to perform basic

arithmetic operations

K3 CO2

2 List the micro operations on K2 CO2

3 Write short notes on Status registers K3 CO2

4 Explain ALU design K5 CO2

5 Explain Design of Logic Circuits K5 CO2

6 Explain design of Accumulator with neat diagram K5 CO2

7 Write short notes on Register transfer logic. K3 CO2

8 Discuss design of Shifter. K4 CO2

9 Discuss Binary incrementer with neat diagram. K4 CO2

10 Discuss Connection between processor and memory. K4 CO2

11 Describe different logic micro operations K4 CO2

12 Describe basic shift operations K3 CO2

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Module III

Qn

No

Question Knowledge

Level

CO

1 List and explain the different pipeline hazards and their possible

solutions

K3 CO3

2 Give the logic used behind Booth’s multiplication algorithm. K2 CO3

3 Identify the appropriate algorithm available inside the system to

perform the multiplication between -14 and -9. Also trace the

algorithm for the above input.

K3 CO3

4 List and explain the different pipeline hazards and their possible

solutions

K5 CO3

5 Design a combinational circuit for 3x2 multiplication. K5 CO3

6 Draw the flowchart for Booth’s Multiplication Algorithm K5 CO3

7 Design a combinational circuit for 3x2 multiplication. K3 CO3

8 Explain restoring method of Division K4 CO3

9 List and explain the different pipeline hazards and their possible

solutions

K4 CO3

10 Design 2x3 multiplier K4 CO3

11 Explain restoring method of division. K4 CO3

12 Describe basic shift operations K3 CO3

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Module IV

Qn

No

Question Knowledge

Level

CO

1 List and explain the different pipeline hazards and their possible

solutions

K3 CO3

2 Give the logic used behind Booth’s multiplication algorithm. K2 CO3

3 Identify the appropriate algorithm available inside the system to

perform the multiplication between -14 and -9. Also trace the

algorithm for the above input.

K3 CO3

4 List and explain the different pipeline hazards and their possible

solutions

K5 CO3

5 Design a combinational circuit for 3x2 multiplication. K5 CO3

6 Draw the flowchart for Booth’s Multiplication Algorithm K5 CO3

7 Design a combinational circuit for 3x2 multiplication. K3 CO3

8 Explain restoring method of Division K4 CO3

9 List and explain the different pipeline hazards and their possible

solutions

K4 CO3

10 Design 2x3 multiplier K4 CO3

11 Explain restoring method of division. K4 CO3

12 Describe basic shift operations K3 CO3

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Module V

Qn

No

Question Knowledge

Level

CO

1 List and explain the different pipeline hazards and their possible

solutions

K3 CO3

2 Give the logic used behind Booth’s multiplication algorithm. K2 CO3

3 Identify the appropriate algorithm available inside the system to

perform the multiplication between -14 and -9. Also trace the

algorithm for the above input.

K3 CO3

4 List and explain the different pipeline hazards and their possible

solutions

K5 CO3

5 Design a combinational circuit for 3x2 multiplication. K5 CO3

6 Draw the flowchart for Booth’s Multiplication Algorithm K5 CO3

7 Design a combinational circuit for 3x2 multiplication. K3 CO3

8 Explain restoring method of Division K4 CO3

9 List and explain the different pipeline hazards and their possible

solutions

K4 CO3

10 Design 2x3 multiplier K4 CO3

11 Explain restoring method of division. K4 CO3

12 Describe basic shift operations K3 CO3

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Module II

Register transfer logic: inter register transfer – arithmetic, logic and shift micro operations.

Processor logic design: - processor organization – Arithmetic logic unit - design of

arithmetic circuit - design of logic circuit - Design of arithmetic logic unit - status register –

design of shifter - processor unit – design of accumulator.

Register transfer logic

A digital system is an interconnection of digital hardware modules. The modules are registers,

decoders, arithmetic elements, and control logic. The various modules are interconnected with

common data and control paths to form a digital computer system. Digital modules are best

defined by the registers they contain and the operations that are performed on the data stored in

them. The operations executed on data stored in registers are called microoperations. A

microoperation is an elementary operation performed on the information stored in one or more

registers. The result of the operation may replace the previous binary information of a register or

may be transferred to another register. Examples of microoperations are shift, count, clear, and

load.

The symbolic notation used to describe the micro-operation transfer among registers is called

RTL (Register Transfer Language). The use of symbols instead of a narrative explanation

provides an organized and concise manner for listing the micro-operation sequences in registers

and the control functions that initiate them.

Registers: Computer registers are designated by upper case letters (and optionally followed by

digits or letters) to denote the function of the register. For example, the register that holds an

address for the memory unit is usually called a memory address register and is designated by the

name MAR. Other designations for registers are PC (for program counter), IR (for instruction

register, and R1 (for processor register). The individual flip-flops in an n-bit register are

numbered in sequence from 0 through n-1, starting from 0 in the rightmost position and

increasing the numbers toward the left. Figure 4-1 shows the representation of registers in block

diagram form.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

The most common way to represent a register is by a rectangular box with the name of the

register inside, as in Fig. 4-1(a). The individual bits can be distinguished as in (b). The

numbering of bits in a 16-bit register can be marked on top of the box as shown in (c). 16-bit

register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for low

byte) and bits 8 through 15 are assigned the symbol H (for high byte). The name of the 16-bit

register is PC. The symbol PC (0-7) or PC (L) refers to the low-order byte and PC (8-15) or PC

(H) to the high-order byte.

Register Transfer:

Information transfer from one register to another is designated in symbolic form by means of a

replacement operator. The statement R2← R1 denotes a transfer of the content of register R1

into register R2. It designates a replacement of the content of R2 by the content of R1. By

definition, the content of the source register R 1 does not change after the transfer. If we want the

transfer to occur only under a predetermined control condition then it can be shown by an if-then

statement.

if (P=1) then R2← R1

P is the control signal generated by a control section. We can separate the control variables from

the register transfer operation by specifying a Control Function. Control function is a Boolean

variable that is equal to 0 or 1. control function is included in the statement as P: R2← R1

Control condition is terminated by a colon implies transfer operation be executed by the

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

hardware only if P=1. Every statement written in a register transfer notation implies a hardware

construction for implementing the transfer. Figure 4-2 shows the block diagram that depicts the

transfer from R1 to R2.

The n outputs of register R1 are connected to the n inputs of register R2. The letter n will be used

to indicate any number of bits for the register. It will be replaced by an actual number when the

length of the register is known. Register R2 has a load input that is activated by the control

variable P. It is assumed that the control variable is synchronized with the same clock as the one

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

applied to the register. As shown in the timing diagram, P is activated in the control section by

the rising edge of a clock pulse at time t. The next positive transition of the clock at time t + 1

finds the load input active and the data inputs of R2 are then loaded into the register in parallel.

Types of Micro-operations:

 Register Transfer Micro-operations: Transfer binary information from one register to

another.

 Arithmetic Micro-operations: Perform arithmetic operation on numeric data stored in

registers.

 Logical Micro-operations: Perform bit manipulation operations on data stored in

registers.

 Shift Micro-operations: Perform shift operations on data stored in registers.

 Register Transfer Micro-operation doesn’t change the information content when the

binary information moves from source register to destination register.

Arithmetic Micro-operations:

The basic arithmetic micro-operations are

 Addition

 Subtraction

 Increment

 Decrement

 Shift

The arithmetic Micro-operation defined by the statement below specifies the add micro-

operation.

R3 ← R1 + R2 . It states that the contents of R1 are added to contents of R2 and sum is

transferred to R3. To implement this statement hardware requires 3 registers and digital

component that performs addition.Subtraction is most often implemented through

complementation and addition.

The subtract operation is specified by the following statement

R3 ← R1 + R2 + 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

 instead of minus operator, we can write as

 R2 is the symbol for the 1’s complement of R2

 Adding 1 to 1’s complement produces 2’s complement

 Adding the contents of R1 to the 2's complement of R2 is equivalent to R1-R2.

Binary Adder:

Digital circuit that forms the arithmetic sum of 2 bits and the previous carry is called FULL

ADDER.

Digital circuit that generates the arithmetic sum of 2 binary numbers of any lengths is called

BINARY ADDER. Figure 4-6 shows the interconnections of four full-adders (FA) to provide a

4-bit binary adder.

The augends bits of A and the addend bits of B are designated by subscript numbers from right to

left, with subscript 0 denoting the low-order bit. The carries are connected in a chain through the

full-adders. The input carry to the binary adder is Co and the output carry is C4. The S outputs of

the full-adders generate the required sum bits. An n-bit binary adder requires n full-adders.

Binary Adder – Subtractor:

The addition and subtraction operations can be combined into one common circuit by including

an exclusive-OR gate with each full-adder. A 4-bit adder-subtractor circuit is shown in Fig. 4-7.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

The mode input M controls the operation. When M = 0 the circuit is an adder and when M = 1

the circuit becomes a subtractor. Each exclusive-OR gate receives input M and one of the inputs

of B .

When M = 0, we have B xor 0 = B. The full-adders receive the value of B, the input carry is 0,

and the circuit performs A plus B. When M = 1, we have B xor 1 = B' and Co = 1. The B inputs

are all complemented and a 1 is added through the input carry. The circuit performs the operation

A plus the 2's complement of B.

Binary Incrementer:

The increment microoperation adds one to a number in a register. For example, if a 4-bit register

has a binary value 0110, it will go to 0111 after it is incremented. This can be accomplished by

means of half-adders connected in cascade. The diagram of a 4-bit 'combinational circuit

incrementer is shown in Fig. 4-8.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other

input is connected to the least significant bit of the number to be incremented. The output carry

from one half-adder is connected to one of the inputs of the next-higher-order half-adder. The

circuit receives the four bits from A0 through A3, adds one to it, and generates the incremented

output in S0 through S3. The output carry C4 will be 1 only after incrementing binary 1111. This

also causes outputs S0 through S3 to go to 0.

The circuit of Fig. 4-8 can be extended to an n -bit binary incrementer by extending the diagram

to include n half-adders. The least significant bit must have one input connected to logic-1. The

other inputs receive the number to be incremented or the carry from the previous stage.

Logic Micro-operations:

Logic microoperations specify binary operations for strings of bits stored in registers. These

operations consider each bit of the register separately and treat them as binary variables. For

example, the exclusive-OR microoperation with the contents of two registers RI and R2 is

symbolized by the statement

It specifies a logic microoperation to be executed on the individual bits of the registers provided

that the control variable P = 1.

List of Logic Microoperations:

binary variables. They

can be determined from all possible truth tables obtained with two binary variables as shown in

Table 4-5.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first

column of Table 4-6. The 16 logic microoperations are derived from these functions by replacing

variable x by the binary content of register A and variable y by the binary content of register B.

The logic micro-operations listed in the second column represent a relationship between the

binary content of two registers A and B.

Shift Microoperations:

Shift microoperations are used for serial transfer of data. The contents of a register can be shifted

to the left or the right. During a shift-left operation the serial input transfers a bit into the

rightmost position. During a shift-right operation the serial input transfers a bit into the leftmost

position. There are three types of shifts: logical, circular, and arithmetic. The symbolic notation

for the shift microoperations is shown in Table 4-7.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Logical Shift: A logical shift is one that transfers 0 through the serial input. The symbols shl and

shr for logical shift-left and shift-right microoperations. The microoperations that specify a 1-bit

shift to the left of the content of register R and a 1-bit shift to the right of the content of register

R shown in table 4.7. The bit transferred to the end position through the serial input is assumed

to be 0 during a logical shift.

Circular Shift: The circular shift (also known as a rotate operation) circulates the bits of the

register around the two ends without loss of information. This is accomplished by connecting the

serial output of the shift register to its serial input. We will use the symbols cil and cir for the

circular shift left and right, respectively.

Arithmetic Shift: An arithmetic shift is a microoperation that shifts a signed binary number to

the left or right. An arithmetic shift-left multiplies a signed binary number by 2. An arithmetic

shift-right divides the number by 2. Arithmetic shifts must leave the sign bit unchanged because

the sign of the number remains the same when it is multiplied or divided by 2.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Part 2

Processor logic design: - processor organization – Arithmetic logic unit - design of

arithmetic circuit - design of logic circuit - Design of arithmetic logic unit - status register –

design of shifter - processor unit – design of accumulator.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Processor organization

To understand the organization of the processor, let us consider the requirements placed on the

processor, the things that it must do:

• Fetch instruction: The processor reads an instruction from memory (register, cache, main

memory).

• Interpret instruction: The instruction is decoded to determine what action is required.

• Fetch data: The execution of an instruction may require reading data from memory or an I/O

module.

• Process data: The execution of an instruction may require performing some arithmetic or

logical operation on data.

• Write data: The results of an execution may require writing data to memory or an I/O module.

Figure 14.1 is a simplified view of a processor, indicating its connection to the rest of the system

via the system bus. The ALU does the actual computation or processing of data. The control unit

controls the movement of data and instructions into and out of the processor and controls the

operation of the ALU. In addition, the figure shows a minimal internal memory, consisting of a

set of storage locations, called registers. The data transfer and logic control paths are indicated,

including an element labeled internal processor bus. This element is needed to transfer data

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

between the various registers and the ALU because the ALU in fact operates only on data in the

internal processor memory. The figure also shows typical basic elements of the ALU. Note the

similarity between the internal structure of the computer as a whole and the internal structure of

the processor. In both cases, there is a small collection of major elements (computer: processor,

I/O, memory; processor: control unit, ALU, registers) connected by data paths.

Design of Arithmetic Circuit

The basic component of an arithmetic circuit is the parallel adder. By controlling the data inputs

to the adder, it is possible to obtain different types of arithmetic operations. The diagram of a 4-

bit arithmetic circuit is shown in Fig. It has four full-adder circuits that constitute the 4-bit adder

and four multiplexers for choosing different operations. There are two 4-bit inputs A and B and a

4-bit output D. The four inputs from A go directly to the X inputs of the binary adder. Each of

the four inputs from B are connected to the data inputs of the multiplexers. The multiplexers data

inputs also receive the complement of B .

The other two data inputs are connected to logic-0 and logic-1 . Logic-0 i s a fixed voltage value

(0 volts for TTL integrated circuits) and the logic-1 signal can be generated through· an inverter

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

whose input is 0. The four multiplexers are controlled by two selection inputs, S1 and S0• The

input carry C'" goes to the carry input of the FA in the least significant position. The other carries

are connected from one stage to the next.

The output of the binary adder is calculated from the following arithmetic sum:

D = A + Y + C'"

where A is the 4-bit binary number at the X inputs and Y is the 4-bit binary number at the Y

inputs of the binary adder. C'" is the input carry, which can be equal to 0 or 1. Note that the

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

symbol + in the equation above denotes an arithmetic plus. By controlling the value of Y with

the two selection inputs S1 and So and making C'" equal to 0 or 1, it is possible to generate the

eight arithmetic microoperations listed Table.

When S1S0 = 00, the value of B is applied to the Y inputs of the adder. If Cin = O, the output D

= A + B . If Cin = 1, output D = A + B + l. Both cases perform the add microoperation with or

without adding the input carry.

When S1S0 = 01, the complement of B is applied to the Y inputs of the adder. If Cin = 1, then D

= A + B + 1. This produces A plus the 2's complement of B, which is equivalent to a subtraction

of A - B. When Cm = 0, then D = A + B . This is equivalent to a subtract with borrow, that is, A

- B - 1.

When S1S0 = 10, the inputs from B are neglected, and instead, all O's are inserted into the Y

inputs. The output becomes D = A + 0 + Cm· This gives D = A when Cm = 0 and D = A + 1

when Cin = 1. In the first case we have a direct transfer from input A to output D. In the second

case, the value of A is incremented by 1.

When S1So = 11, all 1' s are inserted into the Y inputs of the adder to produce the decrement

operation D = A - 1 when Cm = 0. This is because a number with all 1's is equal to the 2's

complement of 1 (the 2's complement of binary 0001 is 1111). Adding a number A to the 2's

complement of 1 produces F = A + 2's complement of 1 = A - 1. When Cin = 1, then D = A - 1 +

1 = A, which causes a direct transfer from input A to output D. Note that the microoperation D =

A is generated twice, so there are only seven distinct microoperations in the arithmetic circuit.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Design of Logic Circuit

The hardware implementation of logic rnicrooperations requires that logic gates be inserted for

each bit or pair of bits in the registers to perform the required logic function. Although there are

16 logic rnicrooperations, most computers use only four-AND, OR, XOR (exclusive-OR), and

complement from which all others can be derived. Figure shows one stage of a circuit that

generates the four basic logic rnicrooperations . It consists of four gates and a multiplexer. Each

of the four logic operations is generated through a gate that performs the required logic.

The outputs of the gates are applied to the data inputs of the multiplexer. The two selection

inputs 51 and 50 choose one of the data inputs of the multiplexer and direct its value to the

output. The diagram shows one typical stage with subscript i. For a logic circuit with n bits, the

diagram must be repeated n times for i = 0, 1, 2, . . . , n - 1. The selection variables are applied to

all stages. The function table in Fig. 4-10(b) lists the logic rnicrooperations obtained for each

combination of the selection variables.

Some Applications:

Logic micro-operations are very useful for manipulating individual bits or a portion of a word

stored in a register. They can be used to change bit values, delete a group of bits or insert new

bits values into a register. The following example shows how the bits of one register (designated

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

by A) are manipulated by logic microoperations as a function of the bits of another register

(designated by B).

The selective-set operation sets to 1 the bits in register A where there are corresponding l's in

register B. It does not affect bit positions that have 0's in B. The following numerical example

clarifies this operation:

Selective complement

The selective-complement operation complements bits in A where there are corresponding 1's in

B. It does not affect bit positions that have 0's in B. For example:

Design of Shifter

A combinational circuit shifter can be constructed with multiplexers as shown in Fig. 4-12. The

4-bit shifter has four data inputs, A0 through A3, and four data outputs, H0 through H3. There

are two serial inputs, one for shift left (IL) and the other for shift right (IR). When the selection

input S=0 the input data are shifted right (down in the diagram). When S = 1, the input data are

shifted left (up in the diagram). The function table in Fig. 4-12 shows which input goes to each

output after the shift.

A shifter with n data inputs and outputs requires n multiplexers. The two serial inputs can be

controlled by another multiplexer to provide the three possible types of shifts.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Status Registers

The relative magnitude of two numbers may be determined by subtracting one number from the other

and then checking certain bit conditions in the resultant difference. This status bit conditions (often

called condition-code bits or flag bits) are stored in a status register.

Status register is a 4 bit register. The four bits are C (carry), Z (zero),S (sign) and V (overflow).

These bits are set or cleared as a result of an operation performed in the ALU.

Bit C is set if the output carry of an ALU is 1.

Bit S is set to 1 if the highest order bit of the result in the output of the ALU is 1. Bit Z is set to 1 if

the output of the ALU contains all O's.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Bit V is set if the exclusive —OR of carries C8 and C9 is 1, and cleared otherwise. This is the

condition for overflow when the numbers are in signed 2's complement representation. For an 8 bit

ALU, V is set if the result is greater than 127 or less than -128.

After an ALU operation, status bits can be checked to determine the relationship that exist between

the values of A and B.

If bit V is set after the addition two signed numbers, it indicates an overflow condition. If Z is set

after an exclusive OR operation, it indicates that A=B. A single bit in A can be checked to determine

if it is 0 or 1 by masking all bits except the bit in question and then checking the Z status bit.

Relative magnitudes of A and B can be checked by compare operation. If A-B is performed for two

unsigned binary numbers, relative magnitudes of A and B can be determined from the values

transferred to the C and Z bits. If Z=1,we knows that A=B, since A-B=0. If Z=0, then we know that

A is not equal to B. Similarly C=1 if A>=B and C=0 if A<B. The following table lists the various

conditions.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Design of Accumulator Logic

The circuits associated with the AC register are shown in Fig. 5-19. The adder and logic circuit

has three sets of inputs. One set of 16 inputs comes from the outputs of AC . Another set of 16

inputs comes from the data register DR . A third set of eight inputs comes from the input register

INPR . The outputs of the adder and logic circuit provide the data inputs for the register. In

addition, it is necessary to include logic gates for controlling the LD, INR, and CLR in the

register and for controlling the operation of the adder and logic circuit. In order to design the

logic associated with AC, it is necessary to go over the register transfer statements in Table 5-6

and extract all the statements that change the content of AC .

From this list we can derive the control logic gates and the adder and logic circuit.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Control of AC Register

The gate structure that controls the LD, INR, and CLR inputs of AC is shown in Fig. 5-20. The

gate configuration is derived from the control functions in the list above. The control function for

the clear micro operation is rBn, where r = D7l ' T3 and Bn = IR (ll). The output of the AND gate

that generates this control function is connected to the CLR input of the register. Similarly, the

output of the gate that implements the increment micro operation is connected to the INR input

of the register. The other seven micro operations are generated in the adder and logic circuit and

are loaded into AC at the proper time. The outputs of the gates for each control function is

marked with a symbolic name. These outputs are used in the design of the adder and logic

circuit.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Adder and Logic Circuit

The adder and logic circuit can be subdivided into 16 stages, with each stage corresponding to

one bit of AC . The load (LD) input is connected to the inputs of the AND gates. Figure 5-21

shows one such AC register stage (with the OR gates removed). The input is labeled I; and the

output AC(i). When the LD input is enabled, the 16 inputs I, for i = 0, 1, 2, . . . , 15 are

transferred to AC (0-15).

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

One stage of the adder and logic circuit consists of seven AND gates, one OR gate and a full-

adder (FA), as shown in Fig. 5-21. The inputs of the gates with symbolic names come from the

outputs of gates marked with the same symbolic name in Fig. 5-20. For example, the input

marked ADD in Fig. 5-21 is connected to the output marked ADD in Fig. 5-20.

The AND operation is achieved by AND ing AC(i) with the corresponding bit in the data register

DR(i). full-adder with the corresponding input and output carries. The transfer from INPR to AC

is only for bits 0 through 7. The complement micro operation is obtained by inverting the bit

value in AC. The shift-right operation transfers the bit from AC(i + 1), One stage of the adder

uses a full-adder with the corresponding input and the shift-left operation transfers the bit from

AC(i - 1). The complete adder and logic circuit consists of 16 stages connected together.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

 Module 3

Arithmetic algorithms: Algorithms for multiplication and division (restoring method) of binary

numbers. Array multiplier , Booth’s multiplication algorithm.

Pipelining: Basic principles, classification of pipeline processors, instruction and arithmetic

pipelines (Design examples not required), hazard detection and resolution.

Multiplication Algorithms

The process consists of looking at successive bits of the multiplier, least significant bit first. If

the multiplier bit is a 1, the multiplicand is copied down; otherwise, zeros are copied down. The

numbers copied down in successive lines are shifted one position to the left from the previous

number. Finally, the numbers are added and their sum forms the product. The sign of the product

is determined from the signs of the multiplicand and multiplier. If they are alike, the sign of the

product is positive. If they are unlike, the sign of the product is negative.

When multiplication is implemented in a digital computer, it is convenient to change the process

slightly. First, instead of providing registers to store and add simultaneously as many binary

numbers as there are bits in the multiplier, it is convenient to provide an adder for the summation

of only two binary numbers and successively accumulate the partial products in a register.

Second, instead of shifting the multiplicand to the left, the partial product is shifted to the right,

which results in leaving the partial product and the multiplicand in the required relative

positions. Third, when the corresponding bit of the multiplier is 0, there is no need to add all

zeros to the partial product since it will not alter its value.

The multiplier is stored in the Q register and its sign in Qs The sequence counter SC is initially

set to a number equal to the number of bits in the multiplier. The counter is decremented by 1

after forming each partial product. When the content of the counter reaches zero, the product is

formed and the process stops.

Initially, the multiplicand is in register B and the multiplier in Q. The sum of A and B forms a

partial product which is transferred to the EA register. Both partial product and multiplier are

shifted to the right. This shift will be denoted by the statement shr EAQ to designate the right

shift depicted in Fig. 10-5. The least significant bit of A is shifted into the most significant

position of Q, the bit from E is shifted into the most significant position of A, and 0 is shifted

into E. After the shift, one bit of the partial product is shifted into Q, pushing the multiplier bits

one position to the right. In this manner, the rightmost flip-flop in register Q, designated by Qn

will hold the bit of the multiplier, which must be inspected next.

Hardware Algorithm

Figure 10-6 is a flowchart of the hardware multiply algorithm. Initially, the multiplicand is in B

and the multiplier in Q. Their corresponding signs are in Bs and Qs respectively. The signs are

compared, and both A and Q are set to correspond to the sign of the product since a double

length product will be stored in registers A and Q. Registers A and E are cleared and the

sequence counter SC is set to a number equal to the number of bits of the multiplier. We are

assuming here that operands are transferred to registers from a memory unit that has words of n

bits. Since an operand must be stored with its sign, one bit of the word will be occupied by the

sign and the magnitude will consist of n - 1 bits.

After the initialization, the low-order bit of the multiplier in Q, is tested. If it is a 1, the

multiplicand in B is added to the present partial product in A . If it is a 0 , nothing i s done.

Register EAQ is then shifted once to the right to form the new partial product The sequence

counter is decremented by 1 and its new value checked. If it is not equal to zero, the process is

repeated and a new partial product is formed. The process stops when SC = 0. Note that the

partial product formed in A is shifted into Q one bit at a time and eventually replaces the

multiplier. The final product is available in both A and Q, with A holding the most significant

bits and Q holding the least significant bits.

Array Multiplier

Checking the bits of the multiplier one at a time and forming partial products is a sequential

operation that requires a sequence of add and shift microoperations. The multiplication of two

binary numbers can be done with one microoperation by means of a combinational circuit that

forms the product bits all at once. This is a fast way of multiplying two numbers since all it takes

is the time for the signals to propagate through the gates that form the multiplication array.

However, an array multiplier requires a large number of gates, and for this reason it was not

economical until the development of integrated circuits. To see how an array multiplier can be

implemented with a combinational circuit, consider the multiplication of two 2-bit numbers as

shown in Fig. 10-9.

The multiplicand bits are b1 and b0, the multiplier bits are a1 and a0, and the product is c3 c2 c1

c0• The first partial product is formed by multiplying a0 by b1 b0• The multiplication of two bits

such as a0 and b0 produces a 1 if both bits are 1; otherwise, it produces a 0. This is identical to

an AND operation and can be implemented with an AND gate. As shown in the diagram, the

first partial product is formed by means of two AND gates. The second partial product is formed

by multiplying a1 by b1 b0 and is shifted one position to the left. The two partial products are

added with two half-adder (HA) circuits. Usually, there are more bits in the partial products and

it will be necessary to use full-adders to produce the sum. Note that the least significant bit of the

product does not have to go through an adder since it is formed by the output of the first AND

gate.

A combinational circuit binary multiplier with more bits can be constructed in a similar fashion.

A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there are

bits in the multiplier. The binary output in each level of AND gates is added in parallel with the

partial product of the previous level to form a new partial product. The last level produces the

product. For j multiplier bits and k multiplicand bits we need j x k AND gates and (j - 1) k-bit

adders to produce a product of j + k bits. As a second example, consider a multiplier circuit that

multiplies a binary number of four bits with a number of three bits. Let the multiplicand be

represented by b3b2b1b0 ,and the multiplier by a2a1a0Since k=4 and j = 3, we need 12 AND gates

and two 4-bit adders to produce a product of seven bits. The logic diagram of the multiplier is

shown in Fig. 10-10.

Booth Multiplication Algorithm

The hardware implementation of Booth algorithm requires the register configuration shown in

Fig. 10-7. This is similar to Fig. 10-5 except that the sign bits are not separated from the rest of

the registers. To show this difference, we rename registers A, B, and Q, as AC, BR, and QR,

respectively. Qn designates the least significant bit of the multiplier in register QR . An extra flip-

flop Qn+1 is appended to QR to facilitate a double bit inspection of the multiplier.

The flowchart for Booth algorithm is shown in Fig. 10-8. AC and the appended bit Qn+1 1 are

initially cleared to 0 and the sequence counter SC is set to a number n equal to the number of bits

in the multiplier. The two bits of the multiplier in Qn and Qn+1 are inspected. If the two bits are

equal to 10, it means that the first 1 in a string of 1' s has been encountered. This requires a

subtraction of the multiplicand from the partial product in AC . If the two bits are equal to 01, it

means that the first 0 in a string of 0' s has been encountered. This requires the addition of the

multiplicand to the partial product in AC . When the two bits are equal, the partial product does

not change. An overflow cannot occur because the addition and subtraction of the multiplicand

follow each other. As a consequence, the two numbers that are added always have opposite

signs, a condition that excludes an overflow. The next step is to shift right the partial product and

the multiplier (including bit Qn+1). This is an arithmetic shift right (ashr) operation which shifts

AC and QR to the right and leaves the sign bit in AC unchanged. The sequence counter is

decremented and the computational loop is repeated n times. A numerical example of Booth

algorithm is shown in Table 10-3 for n = 5.

It shows the step-by-step multiplication of (- 9) x (- 13) = + 117. Note that the multiplier in QR

is negative and that the multiplicand in BR is also negative. The 10-bit product appears in AC

and QR and is positive. The final value of Qn+1 is the original sign bit of the multiplier and

should not be taken as part of the product.

Division

The divisor B consists of five bits and the dividend A, of ten bits. The five most significant bits

of the dividend are compared with the divisor. Since the 5-bit number is smaller than B, we try

again by taking the six most significant bits of A and compare this number with B. The 6-bit

number is greater than B, so we place a 1 for the quotient bit in the sixth position above the

dividend. The divisor is then shifted once to the right and subtracted from the dividend. The

difference is called a partial remainder because the division could have stopped here to obtain a

quotient of 1 and a remainder equal to the partial remainder. The process is continued by

comparing a partial remainder with the divisor. If the partial remainder is greater than or equal to

the divisor, the quotient bit is equal to 1 . The divisor is then shifted right and subtracted from the

partial remainder. If the partial remainder is smaller than the divisor, the quotient bit is 0 and no

subtraction is needed. The divisor is shifted once to the right in any case. Note that the result

gives both a quotient and a remainder.

When the division is implemented in a digital computer, it is convenient to change the process

slightly. Instead of shifting the divisor to the right, the dividend, or partial remainder, is shifted to

the left, thus leaving the two numbers in the required relative position. Subtraction may be

achieved by adding A to the 2's complement of B. The information about the relative magnitudes

is then available from the end-carry.

The hardware for implementing the division operation is identical to that required for

multiplication and consists of the components shown in Fig. 10-5. Register EAQ is now shifted

to the left with 0 inserted into Q, and the previous value of E lost. The numerical example is

repeated in Fig. 10-12 to clarify the proposed division process. The divisor is stored in the B

register and the double-length dividend is stored in registers A and Q. The dividend is shifted

to the left and the divisor is subtracted by adding its 2' s complement value. The information

about the relative magnitude is available in E. If E = 1, it signifies that A >= B. A quotient bit 1

is inserted into Q, and the partial remainder is shifted to the left to repeat the process. If E = 0, it

signifies that A < B so the quotient in Q, remains a 0 (inserted during the shift). The value of B is

then added to restore the partial remainder in A to its previous value. The partial remainder is

shifted to the left and the process is repeated again until all five quotient bits are formed. Note

that while the partial remainder is shifted left, the quotient bits are shifted also and after five

shifts, the quotient is in Q and the final remainder is in A . Before showing the algorithm in

flowchart form, we have to consider the sign of the result and a possible overflow condition. The

sign of the quotient is determined from the signs of the dividend and the divisor. If the two signs

are alike, the sign of the quotient is plus. If they are unalike, the sign is minus. The sign of the

remainder is the same as the sign of the dividend.

Divide Overflow

The division operation may result in a quotient with an overflow. This is not a problem when

working with paper and pencil but is critical when the operation is implemented with hardware.

This is because the length of registers is finite and will not hold a number that exceeds the

standard length. To see this, consider a system that has 5-bit registers. We use one register to

hold the divisor and two registers to hold the dividend. From the example of Fig. 10-11 we note

that the quotient will consist of six bits if the five most significant bits of the dividend constitute

a number greater than the divisor. The quotient is to be stored in a standard 5-bit register, so the

overflow bit will require one more flip-flop for storing the sixth bit. This divide-overflow

condition must be avoided in normal computer operations because the entire quotient will be too

long for transfer into a memory unit that has words of standard length, that is, the same as the

length of registers. Provisions to ensure that this condition is detected must be included in either

the hardware or the software of the computer, or in a combination of the two.

When the dividend is twice as long as the divisor, the condition for overflow can be stated as

follows: A divide-overflow condition occurs if the high-order half bits of the dividend constitute

a number greater than or equal to the divisor. Another problem associated with division is the

fact that a division by zero must be avoided. The divide-overflow condition takes care of this

condition as well. This occurs because any dividend will be greater than or equal to a divisor

which is equal to zero. Overflow condition is usually detected when a special flip-flop is set. We

will call it a divide-overflow flip-flop and label it DVF.

The occurrence of a divide overflow can be handled in a variety of ways. In some computers it is

the responsibility of the programmers to check if DVF is set after each divide instruction. They

then can branch to a subroutine that takes a corrective measure such as rescaling the data to

avoid overflow. In some older computers, the occurrence of a divide overflow stopped the

computer and this condition was referred to as a divide stop . Stopping the operation of the

computer is not recommended because it is time consunting. The procedure in most computers is

to provide an interrupt request when DVF is set. The interrupt causes the computer to suspend

the current program and branch to a service routine to take a corrective measure. The most

common corrective measure is to remove the program and type an error message explaining the

reason why the program could not be completed. It is then the responsibility of the user who

wrote the program to rescale the data or take any other corrective measure. The best way to avoid

a divide overflow is to use floatingpoint data. We will see in Sec. 10-5 that a divide overflow can

be handled very simply if numbers are in floating-point representation.

Hardware Algorithm

The hardware divide algorithm is shown in the flowchart of Fig. 10-13 . The dividend is in A and

Q and the divisor in B . The sign of the result is transferred into Qs to be part of the quotient. A

constant is set into the sequence counter SC to specify the number of bits in the quotient. As in

multiplication, we assume that operands are transferred to registers from a memory unit that has

words o f n bits. Since a n operand must b e stored with its sign, one bit o f the word will be

occupied by the sign and the magnitude will consist of n - 1 bits. A divide-overflow condition is

tested by subtracting the divisor in B from half of the bits of the dividend stored in A . If A ;, B,

the divide-overflow flip-flop DVF is set and the operation is terminated prematurely. If A < B,

no divide overflow occurs so the value of the dividend is restored by adding B to A .

Pipelining

Parallel processing is a term used to denote a large class of techniques that are used to provide

simultaneous data-processing tasks for the purpose of increasing the computational speed of a

computer system. Instead of processing each instruction sequentially as in a conventional

computer, a parallel processing system is able to perform concurrent data processing to achieve

faster execu· tion time. For example, while an instruction is being executed in the ALU, the next

instruction can be read from memory.

Pipelining is a technique of decomposing a sequential process into suboperations, with each

subprocess being executed in a special dedicated segment that operates concurrently with all

other segments. A pipeline can be visualized as a collection of processing segments through

which binary information flows. Each segment performs partial processing dictated by the way

the task is partitioned. The result obtained from the computation in each segment is transferred to

the next segment in the pipeline. The final result is obtained after the data have passed through

all segments. The name "pipeline" implies a flow of information analogous to an industrial

assembly line. It is characteristic of pipelines that several computations can be in progress in

distinct segments at the same time. The overlapping of computation is made possible by

associating a register with each segment in the pipeline. The registers provide isolation between

each segment so that each can operate on distinct data simultaneously.

Suppose that we want to perform the combined multiply and add operations with a stream of

numbers.

A, • B, + C, for i = 1, 2, 3, . . . , 7

Each suboperation is to be implemented in a segment within a pipeline. Each segment has one or

two registers and a combinational circuit as shown in Fig. 9-2. R 1 through RS are registers that

receive new data with every clock pulse. The multiplier and adder are combinational circuits.

The suboperations performed in each segment of the pipeline are as follows:

The five registers are loaded with new data every clock pulse. The effect of each clock is shown

in Table 9-1 . The first clock pulse transfers A1 and 81 into R 1 and R2.

The second dock pulse transfers the product of R 1 and R2 into R3 and C1 into R4. The same

clock pulse transfers A2 and B2 into R 1 and R2. The third clock pulse operates on all three

segments simultaneously. It places A, and B, into R1 and R2, transfers the product of R1 and R2

into R3, transfers C, into R4, and places the sum of R3 and R4 into RS. It takes three clock

pulses to fill up the pipe and retrieve the first output from RS. From there on, each dock produces

a new output and moves the data one step down the pipeline. This happens as long as new input

data flow into the system. When no more input data are available, the clock must continue until

the last output emerges out of the pipeline.

Any operation that can be decomposed into a sequence of sub operations of about the same

complexity can be implemented by a pipeline processor. The technique is efficient for those

applications that need to repeat the same task many times with clifferent sets of data. The general

structure of a four-segment pipeline is illustrated in Fig. 9-3. The operands pass through all four

segments in a fixed sequence. Each segment consists of a combinational circuit S; that performs

a suboperation over the data stream flowing through the pipe. The segments are separated by

registers R; that hold the intermediate results between the stages. Information flows between

adjacent stages under the control of a common clock applied to all the registers simultaneously.

The behavior of a pipeline can be illustrated with a space-time diagram. This is a cliagram that

shows the segment utilization as a function of time. The space-time cliagram of a four-segment

pipeline is demonstrated in Fig. 9-4. The horizontal axis clisplays the time in clock cycles and

the vertical axis gives the segment number. The diagram shows six tasks T1 through T6 executed

in four segments. Initially, task 1i is handled by segment 1. After the first clock, segment 2 is

busy with T,, while segment 1 is busy with task T2• Continuing in this manner, the first task T1

is completed after the fourth clock cycle. From then on, the pipe completes a task every clock

cycle. No matter how many segments there are in the system, once the pipeline is full, it takes

only one clock period to obtain an output.

There are two areas of computer design where the pipeline organization is applicable. An

arithmetic pipeline divides an arithmetic operation into suboperations for execution in the

pipeline segments. An instruction pipeline operates on a stream of instructions by overlapping

the fetch, decode, and execute phases of the instruction cycle. The two types of pipelines are

explained in the following sections.

Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high speed computers. They are used to

implement floating-point operations, multiplication of fixed-point numbers, and similar

computations encountered in scientific problems. A pipeline multiplier is essentially an array

multiplier as described in Fig. 10-10, with special adders designed to minimize the carry

propagation time through the partial products.

We will now show an example of a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized floating- point binary

numbers.

A and B are two fractions that represent the mantissas and a and b are the exponents. The

floating-point addition and subtraction can be performed in four segments, as shown in Fig. 9-6.

The registers labeled R are placed between the segments to store intermediate results. The

suboperations that are performed in the four segments are:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalize the result.

The exponents are compared by subtracting them to determine their difference. The larger

exponent is chosen as the exponent of the result. The exponent difference determines how many

times the mantissa associated with the smaller exponent must be shifted to the right. This

produces an alignment of the two mantissas. It should be noted that the shift must be designed as

a combinational circuit to reduce the shift time. The two mantissas are added or subtracted in

segment 3. The result is normalized in segment 4. When an overflow occurs, the mantissa of the

sum or difference is shifted right and the exponent incremented by one. If an underflow occurs,

the number of leading zeros in the mantissa determines the number of left shifts in the mantissa

and the number that must be subtracted from the exponent.

The following numerical example may clarify the sub operations performed in each segment.

Consider the two normalized floating-point numbers:

The two exponents are subtracted in the first segment to obtain 3 - 2 = 1. The larger exponent 3

is chosen as the exponent of the result. The next segment shifts the mantissa of Y to the right to

obtain

This aligns the two mantissas under the same exponent. The addition of the two mantissas in

segment 3 produces the sum

The sum is adjusted by normalizing the result so that it has a fraction with a nonzero first digit.

This is done by shifting the mantissa once to the right and incrementing the exponent by one to

obtain the normalized sum.

The comparator, shifter, adder-subtractor, incrementer, and decrementer in the floating-point

pipeline are implemented with combinational circuits. Suppose that the timedelaysof the four

segments are t, = 60 ns, t2 = 70 ns, t3 = 100ns, t4 = 80 ns, and the interface registers have a delay

of t, = 10 ns. The dock cycle is chosen to be t, = t3 + t, = 110 ns. An equivalent nonpipeline

floating point adder-subtractor will have a delay time t, = t, + t2 + t, + t4 + t, = 320ns. In this case

the pipelined adder has a speedup of 32011 10 = 2. 9 over the non pipelined adder.

Instruction Pipeline

Pipeline processing can occur not only in the data stream but in the instruction stream as well.

An instruction pipeline reads consecutive instructions from memory while previous instructions

are being executed in other segments. This causes the instruction fetch and execute phases to

overlap and perform simultaneous operations. Computers with complex instructions require

other phases in addition to the fetch and execute to process an instruction completely. In the most

general case, the computer needs to process each instruction with the following sequence of

steps.

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5 . Execute the instruction.

6. Store the result in the proper place.

There are certain difficulties that will prevent the instruction pipeline from operating at its

maximum rate. Different segments may take different times to operate on the incoming

information. Some segments are skipped for certain operations. For example, a register mode

instruction does not need an effective address calculation. Two or more segments may require

memory access at the same time, causing one segment to wait until another is finished with the

memory. Memory access conflicts are sometimes resolved by using two memory buses for

accessing instructions and data in separate modules. In this way, an instruction word and a data

word can be read simultaneously from two different modules.

The design of an instruction pipeline will be most efficient if the instructioncycle is divided into

segments of equal duration. The time that each step takes to fulfill its function depends on the

instruction and the way it is executed.

Assume that the decoding of the instruction can be combined with the calculation of the effective

address into one segment. Assume further that most of the instructions place the result into a

processor register so that the instruction execution and storing of the result can be combined into

one segment. This reduces the instruction pipeline into four segments.

Figure 9-7 shows how the instruction cycle in the CPU can be processed with a four-segment

pipeline. While an instruction is being executed in segment 4, the next instruction in sequence is

busy fetching an operand from memory in segment 3. The effective address may be calculated in

a separate arithmetic circuit for the third instruction, and whenever the memory is available, the

fourth and all subsequent instructions can be fetched and placed in an instruction FIFO. Thus up

to four sub operations in the instruction cycle can overlap and up to four different instructions

can be in progress of being processed at the same time.

Once in a while, an instruction in the sequence may be a program control type that causes a

branch out of normal sequence. In that case the pending operations in the last two segments are

completed and all information stored in the instruction buffer is deleted. The pipeline then

restarts from the new address stored in the program counter. Similarly, an interrupt request, when

acknowledged, will cause the pipeline to empty and start again from a new address value.

Figure 9-8 shows the operation of the instruction pipetine. The time in the horizontal axis is

divided into steps of equal duration. The four segments are represented in the diagram with an

abbreviated symbol.

1. Fl is the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the effective address.

3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.

It is assumed that the processor has separate instruction and data memories

so that the operation in Fl and FO can proceed at the same time. In the absence of a branch

instruction, each segment operates on different instructions. Thus, in step 4, instruction 1 is being

executed in segment EX; the operand for instruction 2 is being fetched in segment FO;

instruction 3 is being decoded in segment DA; and instruction 4 is being fetched from memory in

segment FL Assume now that instruction 3 is a branch instruction. As soon as this instruction is

decoded in segment DA in step 4, the transfer from FI to DA of the other instructions is halted

until the branch instruction is executed in step 6. If the branch is taken, a new instruction is

fetched in step 7. If the branch is not taken, the instruction fetched previously in step 4 can be

used. The pipeline then continues until a new branch instruction is encountered.

Another delay may occur in the pipeline if the EX segment needs to store the result of the

operation in the data memory while the FO segment needs to fetch an operand. In that case,

segment FO must wait until segment EX has finished its operation.

In general, there are three major difficulties that cause the instruction pipeline to deviate from its

normal operation.

1. Resource conflicts caused by access to memory by two segments at the same time. Most of

these conflicts can be resolved by using separate instruction and data memories.

2. Data dependency conflicts arise when an instruction depends on the result of a previous

instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other instructions that change the value of PC.

Data Dependency

A difficulty that may caused a degradation of performance in an instruction pipeline is due to

possible collision of data or address. A collision occurs when an instruction cannot proceed

because previous instructions did not complete certain operations. A data dependency occurs

when an instruction needs data that are not yet available. For example, an instruction in the FO

segment may need to fetch an operand that is being generated at the same time by the previous

instruction in segment EX. Therefore, the second instruction must wait for data to become

available by the first instruction. Similarly, an address dependency may occur when an operand

address cannot be calculated because the information needed by the addressing mode is not

available. For example, an instruction with register indirect mode cannot proceed to fetch the

operand if the previous instruction is loading the address into the register. Therefore, the operand

access to memory must be delayed until the required address is available. Pipelined computers

deal with such conflicts between data dependencies in a variety of ways.The most

straightforward method is to insert hardware interlocks . An interlock is a circuit that detects

instructions whose source operands are destinations of instructions farther up in the pipeline.

Detection of this situation causes the instruction whose source is not available to be delayed by

enough clock cycles to resolve the conflict. This approach maintains the program sequence by

using hardware to insert the required delays.

Another technique called operand forwarding uses special hardware to detect a conflict and then

avoid it by routing the data through special paths between pipeline segments. For example,

instead of transferring an ALU result into a destination register, the hardware checks the

destination operand, and if it is needed as a source in the next instruction, it passes the result

directly into the ALU input, bypassing the register ffie. This method requires additional

hardware paths through multiplexers as well as the circuit that detects the conflict.

A procedure employed in some computers is to give the responsibility for solving data conflicts

problems to the compiler that translates the high-level programming language into a machine

language program. The compiler for such computers is designed to detect a data conflict and

reorder the instructions as necessary to delay the loading of the conflicting data by inserting

delayed load no-operation instructions. This method is referred to as delayed load. An example

of delayed load is presented in the next section.

Handling of Branch Instructions

One of the major problems in operating an instruction pipeline is the occurrence of branch

instructions. A branch instruction can be conditional or unconditional. An unconditional branch

always alters the sequential program flow by loading the program counter with the target

address. In a conditional branch, the control selects the target instruction if the condition is

satisfied or the next sequential instruction if the condition is not satisfied. As mentioned

previously, the branch instruction breaks the norrnal sequence of the instruction stream, causing

difficulties in the operation of the instruction pipeline. One way of handling a conditional branch

is to prefetch the target instruction in addition to the instruction following the branch. Both are

saved until the branch is executed. If the branch condition is successful, the pipeline continues

from the branch target instruction. An extension of this procedure is to continue fetching

instructions from both places until the branch decision is made. At that time control chooses the

instruction stream of the correct program flow.

Another possibility is the use of a branch target buffer or BTB. The BTB is an associative

memory included in the fetch segment of the pipeline. Each entry in the BTB consists of the

address of a previously executed branch instruction and the target instruction for that branch. It

also stores the next few instructions after the branch target instruction. When the pipeline

decodes a branch instruction, it searches the associative memory BTB for the address of the

instruction. If it is in the BTB, the instruction is available directly and prefetch continues from

the new path. If the instruction is not in the BTB, the pipeline shifts to a new instruction stream

and stores the target instruction in the BTB. The advantage of this scheme is that branch

instructions that have occurred previously are readily available in the pipeline without

interruption.

A variation of the BTB is the loop buffer. This is a small very high speed register file maintained

by the instruction fetch segment of the pipeline. When a program loop is detected in the program,

it is stored in the loop buffer in its entirety, including all branches. The program loop can be

executed directly without having to access memory until the loop mode is removed by the final

branching out.

Another procedure that some computers use is branch prediction. A pipeline with branch

prediction uses some additional logic to guess the outcome of a conditional branch instruction

before it is executed. The pipeline then begins prefetching the instruction stream from the

predicted path. A correct prediction eliminates the wasted time caused by branch penalties.

A procedure employed in most ruse processors is the deli<yed branch . In this procedure, the

compiler detects the branch instructions and rearranges the machine language code sequence by

inserting useful instructions that keep the pipeline operating without interruptions. An example

of delayed branch is the insertion of a no-operation instruction after a branch instruction. This

causes the computer to fetch the target instruction during the execution of the no operation

instruction, allowing a continuous flow of the pipeline.

Detection and Resolution of Pipeline Hazards

pipeline hazards are simply any obstruction, condition or we can say any situation that

is obstructing pipelines to work or act normally.

Generally, there are mainly three types of hazards:

1. Structural Hazard

2. Data Hazard

3. Control Hazard

We will discuss all the hazards one by one, let's start with structural hazard

1) Structural Hazard

When we try to do multiple or two different things using the same hardware in the same

clock cycle this prevents the pipeline to work properly this is known as structural hazard.

To avoid this situation processor can use stalling in the pipelining.

Stall of one cycle will shift the pipeline to the one clock cycle until hazard can fully be

avoided or eliminated.

This situation or hazard will not occur if we had separate data cache and instruction cache.

2) Data Hazard

In data hazard, read and write operations of shared variables by different instructions in a

pipeline may lead to different kind of data dependencies such as,

a. Read after write hazard

b. Write after reading hazard

c. Write after write hazard

They arise when an instruction depends on the result of previous instruction is a way i.e

exposed by overlapping of instructions in the pipelining.

To avoid data hazard we can do

a. Internal forwarding

b. Stalling

Internal forwarding- for avoiding the condition of reading after write hazard the latch which

is placed right after ALU unit will be used as internal forwarding for transferring the output

to the next instruction to the latch which is placed before the decoding unit.

Note: These are some other important terms related to data hazard:

i. Data dependency

ii. Flow dependency - Register R1 is loaded by I1 and then used by I2. Hence, the

result of one register after executing instruction may affect the operant of that

register.

iii. Output dependency - when two instructions want to write the same time.

3) Control Hazard

Control hazard occurs when we need to find the main root of any branch instruction, and

cannot proceed further with another instruction till we get to root of that instruction.

Dependencies in a pipelined processor

There are mainly three types of dependencies possible in a pipelined processor. These are :

1) Structural Dependency

2) Control Dependency

3) Data Dependency

These dependencies may introduce stalls in the pipeline.

Stall : A stall is a cycle in the pipeline without new input.

 Structural Hazard

This dependency arises due to the resource conflict in the pipeline. A resource conflict is a

situation when more than one instruction tries to access the same resource in the same cycle. A

resource can be a register, memory, or ALU.

Example:

ICycle 1 2 3 4 5

I1 IF(Mem)ID EX Mem

I2 IF(Mem)ID EX

I3 IF(Mem) ID EX

I4 IF(Mem) ID

In the above scenario, in cycle 4, instructions I1 and I4 are trying to access same resource

(Memory) which introduces a resource conflict.

To avoid this problem, we have to keep the instruction on wait until the required resource

(memory in our case) becomes available. This wait will introduce stalls in the pipeline as shown

below:

Cycle 1 2 3 4 5 6 7 8

I1 IF(Mem) ID EX Mem WB

I2 IF(Mem) ID EX Mem WB

I3 IF(Mem) ID EX Mem WB

I4 – – – IF(Mem)

Solution for structural dependency

To minimize structural dependency stalls in the pipeline, we use a hardware mechanism called

Renaming.

Renaming : According to renaming, we divide the memory into two independent modules used

to store the instruction and data separately called Code memory(CM) and Data memory(DM)

respectively. CM will contain all the instructions and DM will contain all the operands that are

required for the instructions.

ICycle 1 2 3 4 5 6 7

I1 IF(CM) ID EX DM WB

I2 IF(CM) ID EX DM WB

I3 IF(CM) ID EX DM WB

I4 IF(CM) ID EX DM

I5 IF(CM) ID EX

I6 IF(CM) ID

I7 IF(CM)

Control Dependency (Branch Hazards)

This type of dependency occurs during the transfer of control instructions such as BRANCH,

CALL, JMP, etc. On many instruction architectures, the processor will not know the target

address of these instructions when it needs to insert the new instruction into the pipeline. Due to

this, unwanted instructions are fed to the pipeline.

Consider the following sequence of instructions in the program:

100: I1

101: I2 (JMP 250)

102: I3

.

250: BI1

Expected output: I1 -> I2 -> BI1

NOTE: Generally, the target address of the JMP instruction is known after ID stage only.

Instruction/ Cycle 1 2 3 4 5 6

I1 IF ID EX MEM WB

I2 IF ID (PC:250) EX Mem WB

I3 IF ID EX Mem

BI1 IF ID EX

Output Sequence: I1 -> I2 -> I3 -> BI1

So, the output sequence is not equal to the expected output, that means the pipeline is not

implemented correctly.

To correct the above problem we need to stop the Instruction fetch until we get target address of

branch instruction. This can be implemented by introducing delay slot until we get the target

address.

Instruction/ Cycle 1 2 3 4 5 6

I1 IF ID EX MEM WB

I2 IF ID (PC:250) EX Mem WB

Delay – – – – – –

BI1 IF ID EX

Output Sequence: I1 -> I2 -> Delay (Stall) -> BI1

As the delay slot performs no operation, this output sequence is equal to the expected output

sequence. But this slot introduces stall in the pipeline.

Solution for Control dependency Branch Prediction is the method through which stalls due to

control dependency can be eliminated. In this at 1st stage prediction is done about which branch

will be taken.For branch prediction Branch penalty is zero.

Branch penalty : The number of stalls introduced during the branch operations in the pipelined

processor is known as branch penalty.

NOTE : As we see that the target address is available after the ID stage, so the number of stalls

introduced in the pipeline is 1. Suppose, the branch target address would have been present after

the ALU stage, there would have been 2 stalls. Generally, if the target address is present after the

kth stage, then there will be (k – 1) stalls in the pipeline.

Total number of stalls introduced in the pipeline due to branch instructions = Branch frequency *

Branch Penalty

Data Dependency (Data Hazard)

Example: Let there be two instructions I1 and I2 such that:

I1 : ADD R1, R2, R3

I2 : SUB R4, R1, R2

When the above instructions are executed in a pipelined processor, then data dependency

condition will occur, which means that I2 tries to read the data before I1 writes it, therefore, I2

incorrectly gets the old value from I1.

Instruction / Cycle 1 2 3 4

I1 IF ID EX DM

I2 IF ID(Old value) EX

To minimize data dependency stalls in the pipeline, operand forwarding is used.

Operand Forwarding : In operand forwarding, we use the interface registers present between the

stages to hold intermediate output so that dependent instruction can access new value from the

interface register directly. For avoiding the condition of reading after write hazard the latch

which is placed right after ALU unit will be used as internal forwarding for transferring the

output to the next instruction to the latch which is placed before the decoding unit.

Considering the same example:

I1 : ADD R1, R2, R3

I2 : SUB R4, R1, R2

ICycle 1 2 3 4

I1 IF ID EX DM

I2 IF ID EX

Data Hazards

Data hazards occur when instructions that exhibit data dependence, modify data in different

stages of a pipeline. Hazard cause delays in the pipeline. There are mainly three types of data

hazards:

1) RAW (Read after Write) [Flow/True data dependency]

2) WAR (Write after Read) [Anti-Data dependency]

3) WAW (Write after Write) [Output data dependency]

Let there be two instructions I and J, such that J follow I. Then,

RAW hazard occurs when instruction J tries to read data before instruction I writes it.

Eg:

I: R2 <- R1 + R3

J: R4 <- R2 + R3

WAR hazard occurs when instruction J tries to write data before instruction I reads it.

Eg:

I: R2 <- R1 + R3

J: R3 <- R4 + R5

WAW hazard occurs when instruction J tries to write output before instruction I writes it.

Eg:

I: R2 <- R1 + R3

J: R2 <- R4 + R5

WAR and WAW hazards occur during the out-of-order execution of the instructions.

Module 4

Control Logic Design: Control organization – Hard_wired control-microprogram control –

control of processor unit - Microprogram sequencer, micro programmed CPU organization -

horizontal and vertical micro instructions.

The function of the control unit in a digital computer is to initiate sequences of micro operations.

The number of different types of micro operations that are available in a given system is finite.

The complexity of the digital system is derived from the number of sequences of micro

operations that are performed. When the control signals are generated by hardware using

conventional logic design techniques, the control unit is said to be hardwired.

Microprogramming is a second alternative for designing the control unit of a digital computer.

The principle of microprogramming is an elegant and systematic method for controlling the

micro operation sequences in a digital computer. The control variables at any given time can be

represented by a string of l's and O's called a control word. As such, control words can be

programmed to perform various operations on the components of the system.

FUNCTIONS OF CONTROL UNIT

The control unit directs the entire computer system to carry out stored program instructions.

The control unit must communicate with both the arithmetic logic unit (ALU) and main

memory.

The control unit instructs the arithmetic logic unit that which logical or arithmetic operation is

to be performed.

The control unit co-ordinates the activities of the other two units as well as all peripherals and

auxiliary storage devices linked to the computer.

Design of Control Unit

The Control Unit is classified into two major categories:

1. Hardwired Control

2. Microprogrammed Control

Hardwired Control

The Hardwired Control organization involves the control logic to be implemented with gates,

flip-flops, decoders, and other digital circuits. This organization is very complicated if we have a

large control unit. In this organization, if the design has to be modified or changed, requires

changes in the wiring among the various components. Thus the modification of all the

combinational circuits may be very difficult.

ADVANTAGES

Hardwired Control Unit is fast because control signals are generated by combinational

circuits.

The delay in generation of control signals depends upon the number of gates.

DISADVANTAGES

More is the control signals required by CPU; more complex will be the design of control unit.

Modifications in control signal are very difficult. That means it requires rearranging of wires

in the hardware circuit.

It is difficult to correct mistake in original design or adding new feature in existing design of

control unit.

The following image shows the block diagram of a Hardwired Control organization.

o A Hard-wired Control consists of two decoders, a sequence counter, and a number of

logic gates.

o An instruction fetched from the memory unit is placed in the instruction register (IR).

The component of an instruction register includes; I bit, the operation code, and bits 0 through

11. The instruction register is divided into three parts: the I bit, operation code, and address part.

First 12-bits (0-11) to specify an address, next 3-bits specify the operation code (opcode) field of

the instruction and last left most bit specify the addressing mode I.I = 0 for direct address I = 1

for indirect address

o The operation code in bits 12 through 14 are coded with a 3 x 8 decoder.

o The outputs of the decoder are designated by the symbols D0 through D7.

o The operation code at bit 15 is transferred to a flip-flop designated by the symbol I.

o The operation codes from Bits 0 through 11 are applied to the control logic gates.

o The Sequence counter (SC) can count in binary from 0 through 15.

Micro-programmed Control

The Microprogrammed Control organization is implemented by using the programming

approach.

In Microprogrammed Control, the micro-operations are performed by executing a program

consisting of micro-instructions.

The following image shows the block diagram of a Microprogrammed Control organization.

How to find Nth Highest Salary in SQL

A memory that is part of a control unit is referred to as a control memory. A computer that

employs a micro programmed control unit will have two separate memories: a main memory and

a control memory. The main memory is available to the user for storing the programs. The

contents of main memory may alter when the data are manipulated and every time that the

program is changed. The user's program in main memory consists of machine instructions and

data. In contrast, the control memory holds a fixed microprogram that cannot be altered by the

occasional user. The microprogram consists of microinstructions that specify various internal

control signals for execution of register microoperations. Each machine instruction initiates a

series of microinstructions in control memory. These microinstructions generate the

microoperations to fetch the instruction from main memory; to evaluate the effective address, to

execute the operation specified by the instruction, and to return control to the fetch phase in

order to repeat the cycle for the next instruction. The control memory is assumed to be a ROM,

within which all control information is permanently stored. The control memory address register

specifies the address o f the microinstruction, and the control data register holds the

microinstruction read from memory.

The microinstruction contains a control word that specifies one or more microoperations for the

data processor. Once these operations are executed, the control must determine the next address.

The location of the next microinstruction may be the one next in sequence, or it may be located

somewhere else in the control memory. For this reason it is necessary to use some bits of the

present microinstruction to control the generation of the address of the next microinstruction.

The next address may also be a function of external input conditions. While the microoperations

are being executed, the next address is

computed in the next address generator circuit and then transferred into the control address

register to read the next microinstruction. Thus a microinstruction contains bits for initiating

microoperations in the data processor part and bits that determine the address sequence for the

control memory.

The next address generator is sometimes called a microprogram sequencer, as it determines the

address sequence that is read from control memory. The address of the next microinstruction can

be specified in several ways, depending on the sequencer inputs. Typical functions of a

microprogram sequencer are incrementing the control address register by one, loading into the

control address register an address from control memory, transferring an external address, or

loading an initial address to start the control operations.

The control data register holds the present microinstruction while the next address is computed

and read from memory. The data register is sometimes called a pipeline register. It allows the

execution of the microoperations specified by the control word simultaneously with the

generation of the next microinstruction. This configuration requires a two-phase clock, with one

clock applied to the address register and the other to the data register.

The main advantage of the microprogrammed control is the fact that once the hardware

configuration is established, there should be no need for further hardware or wiring changes. If

we want to establish a different control sequence for the system, all we need to do is specify a

different set of microinstructions for control memory. The hardware configuration should not be

changed for different operations; the only thing that must be changed is the microprogram

residing in control memory.

o The Control memory address register specifies the address of the micro-instruction.

o The Control memory is assumed to be a ROM, within which all control information is

permanently stored.

o The control register holds the microinstruction fetched from the memory.

o The micro-instruction contains a control word that specifies one or more micro-

operations for the data processor.

o While the micro-operations are being executed, the next address is computed in the next

address generator circuit and then transferred into the control address register to read the

next microinstruction.

o The next address generator is often referred to as a micro-program sequencer, as it

determines the address sequence that is read from control memory.

o Hardwired control units are generally faster than microprogrammed designs. In hardwired control, we

saw how all the control signals required inside the CPU can be generated using a state counter and a

PLA circuit.

o A microprogrammed control unit is a relatively simple logic circuit that is capable of (1) sequencing

through microinstructions and (2) generating control signals to execute each microinstruction.

 Hardwired Control Unit Microprogrammed Control Unit

Hardwired control unit generates the control signals needed for the

processor using logic circuits

Micrprogrammed control unit generates the control signals with the help

of micro instructions stored in control memory

Hardwired control unit is faster when compared to microprogrammed

control unit as the required control signals are generated with the help of

hardwares

This is slower than the other as micro instructions are used for generating

signals here

More costlier as everything has to be realized in terms of logic gates Less costlier than hardwired control as only micro instructions are used

for generating control signals

It cannot handle complex instructions as the circuit design for it becomes

complex

It can handle complex instructions

Only limited number of instructions are used due to the hardware

implementation

Control signals for many instructions can be generated

Used in computer that make suse of Reduced Instruction Set

Computers(RISC)

Used in computer that makes use of Complex Instruction Set

Computers(CISC)

CPU(Central Processing Unit)
Central Processing Unit (CPU) consists of the following
features −

 CPU is considered as the brain of the computer.

 CPU performs all types of data processing
operations.

 It stores data, intermediate results, and instructions
(program).

 It controls the operation of all parts of the
computer.

CPU itself has following three components.

 Memory or Storage Unit

 Control Unit

 ALU(Arithmetic Logic Unit)

Memory or Storage Unit

This unit can store instructions, data, and intermediate results. This unit supplies
information to other units of the computer when needed. It is also known as internal
storage unit or the main memory or the primary storage or Random Access Memory
(RAM).

Its size affects speed, power, and capability. Primary memory and secondary memory
are two types of memories in the computer. Functions of the memory unit are −

 It stores all the data and the instructions required for processing.

 It stores intermediate results of processing.

 It stores the final results of processing before these results are released to an
output device.

 All inputs and outputs are transmitted through the main memory.

Control Unit

This unit controls the operations of all parts of the computer but does not carry out any
actual data processing operations.

Functions of this unit are −

 It is responsible for controlling the transfer of data and instructions among other
units of a computer.

 It manages and coordinates all the units of the computer.

 It obtains the instructions from the memory, interprets them, and directs the
operation of the computer.

 It communicates with Input/Output devices for transfer of data or results from
storage.

 It does not process or store data.

ALU (Arithmetic Logic Unit)

This unit consists of two subsections namely,

 Arithmetic Section

 Logic Section

Arithmetic Section

Function of arithmetic section is to perform arithmetic operations like addition,
subtraction, multiplication, and division. All complex operations are done by making
repetitive use of the above operations.

Logic Section

Function of logic section is to perform logic operations such as comparing, selecting,
matching, and merging of data.

Micro programmed sequencer for a control memory Microprogram sequencer:

 The basic components of a microprogrammed control unit are the control memory and the circuits that

select the next address. The address selection part is called a microprogram sequencer. A microprogram

sequencer can be constructed with digital functions to suit a particular application. To guarantee a wide

range of acceptability, an integrated circuit sequencer must provide an internal organization that can be

adapted to a wide range of applications. The purpose of a microprogram sequencer is to present an

address to the control memory so that a microinstruction may be read and executed. Commercial

sequencers include within the unit an internal register stack used for temporary storage of addresses

during microprogram looping and subroutine calls. Some sequencers provide an output register which

can function as the address register for the control memory. There are two multiplexers in the circuit.

The first multiplexer selects an address from one of four sources and routes it into a control address

register CAR. The second multiplexer tests the value of a selected status bit and the result of the test is

applied to an input logic circuit. The output from CAR provides the address for the control memory. The

content of CAR is incremented and applied to one of the multiplexer inputs and to the subroutine

registers SBR. The other three inputs to multiplexer 1 come from the address field of the present

microinstruction, from the output of SBR, and from an external source that maps the instruction.

Although the figure 4.6 shows a single subroutine register, a typical sequencer will have a register stack

about four to eight levels deep. In this way, a number of subroutines can be active at the same time.

The CD (condition) field of the microinstruction selects one of the status bits in the second multiplexer.

If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is equal to 0. The T value

together with the two bits from the BR (branch) field goes to an input logic circuit. The input logic in a

particular sequencer will determine the type of operations that are available in the unit.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

I/O device n I/O device 1

Memory Processor

Module: 5

I/O ORGANIZATION – Accessing I/O devices – interrupts - interrupt hardware

– Direct Memory Access.

THE MEMORY SYSTEM - Basic concepts – Semiconductor RAMs – Memory system

considerations – Semiconductor ROMs –Content Addressable memory – Cache

Memory -Mapping Functions.

ACCESSING I/O DEVICES

 A simple arrangement to connect I/O devices to a computer is to use a single
bus structure. It consists of three sets of lines to carry

 Address

 Data

 Control Signals.

 When the processor places a particular address on address lines, the devices that

recognize this address responds to the command issued on the control lines.

 The processor request either a read or write operation and the requested data are
transferred over the data lines.

 When I/O devices & memory share the same address space, the arrangement is called

memory mapped I/O.

Single Bus Structure

 Bus

Eg:-

Move DATAIN, Ro - Reads the data from DATAIN then into processor register Ro.

Move Ro, DATAOUT - Send the contents of register Ro to location DATAOUT.

DATAIN - Input buffer associated with keyboard.

DATAOUT - Output data buffer of a display unit / printer.

Fig: I/O Interface for an Input Device

 BUS

 I/O interface

Address line

Data line
Control line

Control

circuit

s

Data & status

register

Input device

Address

decoder

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Address Decoder:

 It enables the device to recognize its address when the address appears on
address lines.

Data register - It holds the data being transferred to or from the processor.

Status register - It contains information relevant to the operation of the I/O devices.

 The address decoder, data & status registers and the control circuitry required to
co-ordinate I/O transfers constitute the device‟s I/O interface circuit.

 For an input device, SIN status flag is used SIN = 1, when a character is entered
at the keyboard, SIN = 0, once the char is read by processor.

 For an output device, SOUT status flag is used.

Eg: Registers used in the data transfer operations

DIRQ - Interrupt Request for display.

KIRQ - Interrupt Request for keyboard.

KEN - Keyboard enable.

DEN - Display Enable.

SIN, SOUT - Status flags.

The data from the keyboard are made available in the DATAIN register & the data sent to

the display are stored in DATAOUT register.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Program:

EXPLANATION:

 This program, reads a line of characters from the keyboard & stores it in a
memory buffer starting at locations LINE.

Then it calls the subroutine “PROCESS” to process the input line.

As each character is read, it is echoed back to the display.

Register Ro is used as a pointer to memory buffer area. The contents of R0 are

updated using Auto – increment mode so that successive characters are stored in

successive memory location.

 Each character is checked to see if there is carriage return (CR), char, which has
the ASCII code 0D (hex).

 If it is, a line feed character (ASCII character 0A) is sent to move the cursor

one line down on the display & subroutine PROCESS is called. Otherwise, the
program loops back to wait for another character from the keyboard.

PROGRAM CONTROLLED I/O

In the above example, the processor repeatedly checks a status flag to

achieve the required synchronization between Processor & I/O device. (ie) the

processor polls the device.

There are 2 mechanisms to handle I/o operations. They are,

 Interrupt - Synchronization is achieved by having I/O device send special signal

over the bus where is ready for data transfer operation.

 DMA - It is a technique used for high speed I/O device. Here, the device

interface transfer data directly to or from the memory without

continuous involvement by the processor.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

INTERRUPTS

When a program enters a wait loop, it will repeatedly check the device status.

During this period, the processor will not perform any function. There are many

situations where other tasks can be performed while waiting for an I/O device to

become ready. To allow this to happen, we can arrange for the I/O device to

alert the processor when it becomes ready.

It can do so by sending a hardware signal called an interrupt to the processor.

At least one of the bus control lines called an interrupt request line is usually

dedicated for this purpose.

 Since the processor is no longer required to continuously check the status of

external devices, it can use the waiting period to perform other useful functions.

Indeed by using interrupts such waiting periods can ideally be eliminated.

The routine executed in response to an interrupt request is called Interrupt

Service Routine.

Fig: Transfer of control through the use of interrupts

 Assume that an interrupt requests arrives during the execution of instruction i.

 The processor first completes the execution of instruction i. Then it loads the PC (Program

Counter) with the address of the first instruction of the ISR.

 After the execution of ISR, the processor has to come back to instruction i + 1.

 Therefore, when an interrupt occurs, the current contents of PC which point to i+1 is put in

temporary storage in a known location.

 A return from interrupt instruction at the end of ISR reloads the PC from that temporary storage

location, causing the execution to resume at instruction i+1.

 When the processor is handling the interrupts, it must inform the device that its request has been

recognized so that it remove its interrupt requests signal.

 This may be accomplished by a special control signal called the interrupt acknowledge signal.

 The task of saving and restoring the information can be done automatically by the processor.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

 The processor saves only the contents of program counter & status register ie; it saves only

the minimal amount of information to maintain the integrity of the program execution.

 Saving registers also increases the delay between the time an interrupt request is

received and the start of the execution of the ISR. This delay is called the Interrupt

Latency.

 Generally, the long interrupt latency in unacceptable.

 The concept of interrupts is used in Operating System and in Control Applications,

where processing of certain routines must be accurately timed relative to external events.

This application is also called as real-time processing.

Interrupt Hardware:

 A single interrupt request line may be used to serve n devices. All devices are connected to the line via

switches to ground.

 To request an interrupt, a device closes its associated switch, the voltage on INTR line drops to 0(zero).

 If all the interrupt request signals (INTR1 to INTRn) are inactive, all switches are open and the voltage on

INTR line is equal to Vdd..

 When a device requests an interrupt by closing its switch, the voltage on the line drops to 0, causing INTR

request signal received by the processor to go to 1.

 Since closing one or more switches will cause line voltage to drop to 0, the value of INTR is the logical

OR of the requests from individual devices. ie;

 INTR = INTR1+… +INTRn

 INTR - It is used to name the INTR signal on common line it is active in the low voltage state.

 In figure special gates called,

 Open collector (bipolar ckt) or Open drain (MOS circuits) is used to drive INTR line. The Output

of the Open collector (or) Open drain control is equal to a switch to the ground that is open when

gates input is in „0‟ state and closed when the gates input is in „1‟ state.

 Resistor „R‟ is called a pull-up resistor because it pulls the line voltage upto the high voltage state

when the switches are open.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Enabling and Disabling Interrupts:

 The arrival of an interrupt request from an external device causes the processor to

suspend the execution of one program & start the execution of another because
the interrupt may alter the sequence of events to be executed.

INTR is active during the execution of Interrupt Service Routine.

There are 3 mechanisms to solve the problem of infinite loop which occurs due to
successive interruptions of active INTR signals.

 The following are the typical scenario.

 The device raises an interrupt request.

 The processor interrupts the program currently being executed.

 Interrupts are disabled by changing the control bits is PS (Processor Status

register)

 The device is informed that its request has been recognized & in response, it

deactivates the INTR signal.

 The actions are enabled & execution of the interrupted program is resumed.

Edge-triggered:

The processor has a special interrupt request line for which the interrupt handling

circuit responds only to the leading edge of the signal. Such a line said to be edge-

triggered.

Handling Multiple Devices:

 When several devices requests interrupt at the same time, it raises some questions.

They are.

 How can the processor recognize the device requesting an interrupt?

 Given that the different devices are likely to require different ISR, how

can the processor obtain the starting address of the appropriate routines in

each case?

 Should a device be allowed to interrupt the processor while another

interrupt is being serviced?

 How should two or more simultaneous interrupt requests be handled?

Polling Scheme:

If two devices have activated the interrupt request line, the ISR for the selected

device (first device) will be completed & then the second request can be serviced.

The simplest way to identify the interrupting device is to have the ISR polls all

the encountered with the IRQ bit set is the device to be serviced

IRQ (Interrupt Request) -> when a device raises an interrupt requests, the status
register IRQ is set to 1.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Advantage: It is easy to implement.

 Disadvantages: The time spent for interrogating the IRQ bits of all the devices that may

 not be requesting any service.

Vectored Interrupt:

 Here the device requesting an interrupt may identify itself to the processor by
sending a special code over the bus & then the processor start executing the ISR.

 The code supplied by the processor indicates the starting address of the ISR for
the device.

The code length ranges from 4 to 8 bits.

The location pointed to by the interrupting device is used to store the staring

address to ISR.

The processor reads this address, called the interrupt vector & loads into PC.

The interrupt vector also includes a new value for the Processor Status Register.

When the processor is ready to receive the interrupt vector code, it activate the

interrupt acknowledge (INTA) line.

Interrupt Nesting:

Multiple Priority Scheme:

 In multiple level priority scheme, we assign a priority level to the processor that
can be changed under program control.

 The priority level of the processor is the priority of the program that is currently
being executed.

 The processor accepts interrupts only from devices that have priorities higher than

its own.

 At the time the execution of an ISR for some device is started, the priority of the
processor is raised to that of the device.

 The action disables interrupts from devices at the same level of priority or lower.

Privileged Instruction:

 The processor priority is usually encoded in a few bits of the Processor Status

word. It can also be changed by program instruction & then it is write into PS.
These instructions are called privileged instruction. This can be executed only

when the processor is in supervisor mode.

The processor is in supervisor mode only when executing OS routines.

It switches to the user mode before beginning to execute application program.

Privileged Exception:

 User program cannot accidently or intentionally change the priority of the
processor & disrupts the system operation.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

 An attempt to execute a privileged instruction while in user mode, leads to
a special type of interrupt called the privileged exception.

Each of the interrupt request line is assigned a different priority level.

Interrupt request received over these lines are sent to a priority arbitration circuit
in the processor.

 A request is accepted only if it has a higher priority level than that currently

assigned to the processor,

Simultaneous Requests:

Daisy Chain:

 The interrupt request line INTR is common to all devices. The interrupt
acknowledge line INTA is connected in a daisy chain fashion such that INTA
signal propagates serially through the devices.

 When several devices raise an interrupt request, the INTR is activated & the

processor responds by setting INTA line to 1. this signal is received by device.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Device1 passes the signal on to device2 only if it does not require any service.

If devices1 has a pending request for interrupt blocks that INTA signal &

proceeds to put its identification code on the data lines.

 Therefore, the device that is electrically closest to the processor has the highest
priority.

Merits:

It requires fewer wires than the individual connections.

Arrangement of Priority Groups:

 Here the devices are organized in groups & each group is connected at a different
priority level.

 Within a group, devices are connected in a daisy chain.

Controlling Device Requests:

KEN  Keyboard Interrupt Enable

DEN  Display Interrupt Enable

KIRQ / DIRQ  Keyboard / Display unit requesting an interrupt.

There are two mechanism for controlling interrupt requests.

At the devices end, an interrupt enable bit in a control register determines whether

the device is allowed to generate an interrupt requests.

 At the processor end, either an interrupt enable bit in the PS (Processor Status) or
a priority structure determines whether a given interrupt requests will be accepted.

Initiating the Interrupt Process:

 Load the starting address of ISR in location INTVEC (vectored interrupt).

 Load the address LINE in a memory location PNTR. The ISR will use this

location as a pointer to store the input characters in the memory.

 Enable the keyboard interrupts by setting bit 2 in register CONTROL to 1.

 Enable interrupts in the processor by setting to 1, the IE bit in the processor status

register PS.

Exception of ISR:

 Read the input characters from the keyboard input data register. This will cause

the interface circuits to remove its interrupt requests.

 Store the characters in a memory location pointed to by PNTR & increment

PNTR.

 When the end of line is reached, disable keyboard interrupt & inform program

main.

 Return from interrupt.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Exceptions:

 An interrupt is an event that causes the execution of one program to be suspended
and the execution of another program to begin.

 The Exception is used to refer to any event that causes an interruption.

Kinds of exception:

 Recovery from errors

 Debugging

 Privileged Exception

Recovery From Errors:

 Computers have error-checking code in Main Memory, which allows detection of
errors in the stored data.

 If an error occurs, the control hardware detects it informs the processor by raising
an interrupt.

 The processor also interrupts the program, if it detects an error or an unusual

condition while executing the instance (ie) it suspends the program being
executed and starts an execution service routine.

 This routine takes appropriate action to recover from the error.

Debugging:

 System software has a program called debugger, which helps to find errors in a
program.

The debugger uses exceptions to provide two important facilities

They are

 Trace
 Breakpoint

Trace Mode:

 When processor is in trace mode, an exception occurs after execution of every
instance using the debugging program as the exception service routine.

The debugging program examine the contents of registers, memory location etc.

On return from the debugging program the next instance in the program being

debugged is executed

 The trace exception is disabled during the execution of the debugging program.

Break point:

 Here the program being debugged is interrupted only at specific points selected by
the user.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

 An instance called the Trap (or) software interrupt is usually provided for this
purpose.

While debugging the user may interrupt the program execution after instance „I‟

When the program is executed and reaches that point it examine the memory and

register contents.

Privileged Exception:

 To protect the OS of a computer from being corrupted by user program certain
instance can be executed only when the processor is in supervisor mode. These

are called privileged exceptions.

 When the processor is in user mode, it will not execute instance (ie) when
the processor is in supervisor mode , it will execute instance.

DIRECT MEMORY ACCESS

 It is a technique used for high speed I/O device.

 Here, the device interface transfer data directly to or from the memory without

continuous involvement by the processor

 A special control unit may be provided to allow the transfer of large block of data

at high speed directly between the external device and main memory, without continuous

intervention by the processor. This approach is called DMA.

 DMA transfers are performed by a control circuit called the DMA Controller.

 To initiate the transfer of a block of words , the processor sends,

 Starting address

 Number of words in the block

 Direction of transfer.

 When a block of data is transferred , the DMA controller increment the memory

address for successive words and keep track of number of words and it also informs
the processor by raising an interrupt signal.

 While DMA control is taking place, the program requested the transfer cannot
continue and the processor can be used to execute another program.

 After DMA transfer is completed, the processor returns to the program that requested
the transfer.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

R/W - Determines the direction of transfer.

When

R/W =1, DMA controller read data from memory to I/O device.

R/W =0, DMA controller perform write operation.

Done Flag=1, the controller has completed transferring a block of data and is

ready to receive another command.

IE=1, it causes the controller to raise an interrupt (interrupt Enabled) after it has

completed transferring the block of data.

IRQ=1, it indicates that the controller has requested an interrupt.

Fig: Use of DMA controllers in a computer system

 A DMA controller connects a high speed network to the computer bus. The disk
controller two disks, also has DMA capability and it provides two DMA channels.

 To start a DMA transfer of a block of data from main memory to one of the disks,
the program write s the address and the word count information into the registers
of the corresponding channel of the disk controller.

 When DMA transfer is completed, it will be recorded in status and control registers
of the DMA channel (ie) Done bit=IRQ=IE=1.

Cycle Stealing:

 Requests by DMA devices for using the bus are having higher priority than
processor requests.

 Top priority is given to high speed peripherals such as ,

 Disk
 High speed Network Interface and Graphics display device.

 Since the processor originates most memory access cycles, the DMA controller

can be said to steal the memory cycles from the processor.

This interviewing technique is called Cycle stealing.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Burst Mode:

The DMA controller may be given exclusive access to the main memory to

transfer a block of data without interruption. This is known as Burst/Block Mode

Bus Master:

The device that is allowed to initiate data transfers on the bus at any given time is

called the bus master.

Bus Arbitration:

It is the process by which the next device to become the bus master is selected and

the bus mastership is transferred to it.

Types:

There are 2 approaches to bus arbitration. They are,

 Centralized arbitration (A single bus arbiter performs arbitration)

 Distributed arbitration (all devices participate in the selection of next bus

master).

Centralized Arbitration:

 Here the processor is the bus master and it may grants bus mastership to one of its
DMA controller.

 A DMA controller indicates that it needs to become the bus master by activating
the Bus Request line (BR) which is an open drain line.

 The signal on BR is the logical OR of the bus request from all devices connected
to it.

 When BR is activated the processor activates the Bus Grant Signal (BGI) and
indicated the DMA controller that they may use the bus when it becomes free.

This signal is connected to all devices using a daisy chain arrangement.

If DMA requests the bus, it blocks the propagation of Grant Signal to other

devices and it indicates to all devices that it is using the bus by activating open

collector line, Bus Busy (BBSY).

Fig: A simple arrangement for bus arbitration using a daisy chain

 KTU - CST202 [Computer Organization and Architecture] Module: 5

 The timing diagram shows the sequence of events for the devices connected to the
processor is shown.

DMA controller 2 requests and acquires bus mastership and later releases the bus.

During its tenture as bus master, it may perform one or more data transfer.

After it releases the bus, the processor resources bus mastership

Distributed Arbitration:
It means that all devices waiting to use the bus have equal responsibility in carrying out
the arbitration process without using a central arbiter.

 Each device on the bus is assigned a 4 bit id.

 When one or more devices request the bus, they assert the Start-Arbitration signal &
place their 4 bit ID number on four open collector lines, ARB0 to ARB3.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

 A winner is selected as a result of the interaction among the signals transmitted over
these lines.

 The net outcome is that the code on the four lines represents the request that has the

highest ID number.

 The drivers are of open collector type. Hence, if the input to one driver is equal to 1, the

input to another driver connected to the same bus line is equal to 0, then bus will be in

low-voltage state.

Example
 Assume two devices A & B have their ID 5 (0101), 6(0110). They are requesting

the use of bus.

 Device A transmits the pattern 0101 and B transmits 0110. The code seen by both
devices is 0111.

 Each devices compares the pattern on the arbitration line to its own ID starting from

MSB.

 If it detects a difference at any bit position, it disables the drivers at that bit

position and for all lower order bits.

 It does this by placing 0 at the input of these drivers.

 In our example. A detects a difference in line ARB1, hence it disables the drivers on
lines ARB1 & ARB0.

 This causes the pattern on the arbitration line to change to 0110 which means that

B has won the contention.

 Note that since the code on the priority line is 0111 for a shorter period, device B

 may be temporarily disable its driver on line ARB0. However, it will enable this driver

once it sees a 0 on line ARB1 resulting from the action by device A.

Advantages:

Highly reliable – because operation of the bus is not dependent on any single device.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

MEMORY SYSTEM - INTRODUCTION

Programs and data they operate on are resided in the memory of the computer. The execution

speed of the program is dependent on how fast the transfer of data and instructions in-between memory

and processor. There are three major types of memory available: Cache, Primary and Secondary

Memories.

A good memory would be fast, large and inexpensive. Unfortunately, it is impossible to meet all

three of these requirements simultaneously. Increased speed and size are achieved at increased cost.

BASIC CONCEPTS:

A memory unit is considered as a collection of cells, in which each cell is capable of storing a

bit of information. It stores information in group of bits called byte or word.The maximum size of the

memory that can be used in any computer is determined by the addressing scheme.

Word length is the number of bits that can be transferred to or from the memory, it can be

determined from the width of data bus, if the data bus has a width of n bits, it means word length of that

computer system is n bits.

Memory access time: time elapses between the

initiation of an operation and the completion of that

operation.

Memory cycle time: minimum time delay

required between the initiations of two successive

memory locations.

Compared to processor, the main memory unit

is very slow. So in order to transfer something

between memory and processor takes a long time. The

processor has to wait a lot. To avoid this speed gap

between memory and processor a new memory called cache memory is placed in between main

memory and processor.

In the memory hierarchy, speed will decrease and size will increase from top to bottom level.An

important design issue is to provide a computer system with as large and fast a memory as possible,

within a given cost target.

Random Access Memory (RAM)is a memory system in which any location can be accessed for

a Read or Write operation in some fixed amount of time that is independent of the location‟s address.

Several techniques to increase the effective size and speed of the memory: Cache memory (to

increase the effective speed) &Virtual memory (to increase the effective size

Connection of a memory to a processor

The processor reads data from the memory by loading the address of the location into the MAR

 KTU - CST202 [Computer Organization and Architecture] Module: 5

register and setting the R/W line to 1.Upon receiving the MFC signal, the processor loads the data on

the data lines into the MDR register.

The processor writes data into the memory location by loading the data into MDR. It indicates that a

write operation is involved by setting the R/W line to 0. If MAR is k bits long and MDR is n bits long,

then the memory unit may contain up to 2k addressable locations. Memory access can be synchronized

by using a clock.

`

SEMICONDUCTOR RAM MEMORIES

Semiconductor memories are available in a wide range of speeds. Their cycle times range from

100ns to less than 10 ns.

When first introduced in late 1990s, they were much more expensive than the magnetic-core

memories they replaced. Because of rapid advances in VLSI (Very Large Scale Integration) technology,

the cost of semiconductor memories has dropped dramatically. As a result, they are now used almost

exclusively in implementing memories.

Internal Organization of Memory Chips

Memory cells are usually organized in the form of array, in which each cell is capable of storing

one bit of information.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Each row of cells consists of memory word, and all cells of a row are connected to a common

line referred to as the word line, which is driven by the address decoder on a chip.The cells in each

column are connected to a Sense/Write circuit by two bit lines. Sense/write circuits are connected to the

data input/output lines of the memory chip.

During read operation, these circuits sense or read the information stored in the cells selected by

a word line and transmit this information to the output data lines. During a write operation, the

sense/write circuits receive input information and store it in the cells of the selected word.

Two control lines, R/W and CS, are provided in addition to address and data lines. The

Read/Write input specifics the required operation, and the CS input select a given chip in multichip

memory system

Static Memories (SRAM)

Static memories are the memories that consist of circuits capable of retaining their state as long

as power is applied. Two transistor inverters are cross connected to implement a basic flip-flop. The cell

is connected to one word line and two bits lines by transistors T1 and T2. When word line is at ground

level, the transistors are turned off and the latch retains its state.

Most of the static RAMs are built using MOS (Metal Oxide Semiconductor) technology, but

some are built using bipolar technology. If the cell is in state 1/0, the signal on b is high/low and signal

on bit line b‟ is low/high.

Read operation: In order to read state of SRAM cell, the word line is activated to close switches

T1 and T2. Sense/Write circuits at the bottom monitor the state of b and b‟.

Write operation: During the write operation, the state of the cell is set by placing the appropriate

value on bit line b and its complement on b‟ and then activating the word line. This forces the cell into

the corresponding state. The major advantage of SRAM is very quicly accessed by the processor. The

major disadvantage is that SRAM are expensive memory and SRAM are Volatile memory. If the power

is interrupted, the cell‟s content will be lost. Continuous power is needed for the cell to retain its state.

Dynamic Memories (DRAM)

Static RAMs are fast, but the cost is too high because their cells require several transistors.Less

expensive RAMs can be implemented if simpler cells are used. Such cells don't retain their state

indefinitely; hence they are called dynamic RAMs

Dynamic RAMs (DRAMs) are cheap and area efficient, but they cannot retain their state

indefinitely – need to be periodically refreshed. Dynamic memory cell consists of a capacitor C, and a

 KTU - CST202 [Computer Organization and Architecture] Module: 5

transistor T.

Information is stored is a dynamic memory cell in the form of charge on a capacitor and this

charge can be maintained for only tens of milliseconds.

Since the cell is required to store information for a much

longer time, its contents must be periodically refreshed by

restoring the capacitor charge to its full value.

Read Operation: Transistor turned on, Sensor check

voltage of capacitor. If voltage is less than Threshold value,

Capacitor discharged and it represents logical „0‟ else if voltage is

above Threshold value, Capacitor charged to full voltage and it

represents Logical „1‟

Write Operation - Transistor is turned on and a voltage is

applied/removed to the bit line.

Asynchronous Dynamic RAM:

In Asynchronous dynamic RAM, the timing of the memory device is controlled

asynchronously.A specialized memory controller circuit provides the necessary control signals, RAS

and CAS, which govern the timing. The processor must take into account the delay in the response of

the memory.

In the diagram above, we can see that there are two extra elements with two extra lines attached

to them: the Row Address Latch is controlled by the RAS (or Row Address Strobe) pin, and the Column

Address Latch is controlled by the CAS (or Column Address Strobe) pin.

Read Operation:

1. The row address is placed on the address pins via the address bus.

2. The RAS pin is activated, which places the row address onto the Row Address Latch.

3. The Row Address Decoder selects the proper row to be sent to the sense amps.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

4. The Write Enable (not pictured) is deactivated, so the DRAM knows that it's not being

written to.

5. The column address is placed on the address pins via the address bus.

6. The CAS pin is activated, which places the column address on the Column Address Latch.

7. The CAS pin also serves as the Output Enable, so once the CAS signal has stabilized the

sense amps, it place the data from the selected row and column on the Data Out pin so that it

can travel the data bus back out into the system.

8. RAS and CAS are both deactivated so that the cycle can begin again.

Write Operation:

1. In the write operation, the information on the data lines is transferred to the selected circuits.

For this write enable is activated

Fast Page Mode

Suppose if we want to access the consecutive bytes in the selected row. This can be done

without having to reselect the row. Add a latch at the output of the sense circuits in each row.

All the latches are loaded when the row is selected.Different column addresses can be applied to select

and place different bytes on the data lines. Consecutive sequence of column addresses can be applied

under the control signal CAS, without reselecting the row.

This methodology allows a block of data to be transferred at a much faster rate than random

accesses.A small collection/group of bytes is usually referred to as a block.This transfer capability is

referred to as the fast page mode feature. This mode of operation is useful when there is requirement for

fast transfer of data (Eg: Graphical Terminals)

Synchronous DRAM’s

Operation is directly synchronized with processor clock signal. The outputs of the sense circuits

are connected to a latch. During a Read operation, the contents of the cells in a row are loaded onto the

latches. During a refresh operation, the contents of the cells are refreshed without changing the contents

of the latches.

Data held in the latches correspond to the selected columns are transferred to the output.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

For a burst mode of operation, successive columns are selected using column address counter

and clock. CAS signal need not be generated externally. A new data is placed duringraising edge of the

clock

Memory latency is the time it takes to transfer a word of data to or from memory.

Memory bandwidth is the number of bits or bytes that can be transferred in one second.

Double Data Rate SDRAM

DDR-SDRAM is a faster version of SDRAM. The standard SDRAM perform all actions on the

rising edge of the clock signal.DDR SDRAM is also access the cell array in the same way but transfers

data on both edges of the clock. So bandwidth is essentially doubled for long burst transfers.

To make it possible to access the data at a high enough rate, the cell array is organized in two

banks. Each bank can access separately.Consecutive words of a given block arc stored in different

banks. Such interleaving of words allows simultaneous access to two words that are transferred on

successive edges of the clock.

Static RAM Dynamic RAM

More expensive Less expensive

No refresh Deleted & refreshed

High power Less power

Less storage capacity Higher storage capacity

MOS transistors Transistor & capacitor

Faster Slow

More reliable Less reliable

Structure of Larger Memories

Let discuss about how memory chips may be connected to form a much larger memory.

Static Memory Systems

Implement a memory unit of 2M words of 32 bits each. Use 512x8 static memory chips. Each

column consists of 4 chips. Each chip implements one byte position. A chip is selected by setting its

chip select control line to 1. Selected chip places its data on the data output line, outputs of other chips

are in high impedance state. 21 bits to address a 32-bit word and high order 2 bits are needed to select

the row, by activating the four Chip Select signals. 19 bits are used to access specific byte locations

inside the selected chip.

Dynamic Memory Systems

Large dynamic memory systems can be implemented using DRAM chips in a similar way to

static memory systems. Placing large memory systems directly on the motherboard will occupy a large

amount of space. Also, this arrangement is inflexible since the memory system cannot be expanded

easily.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Packaging considerations have led to the development of larger memory units known as SIMMs

(Single In-line Memory Modules) and DIMMs (Dual In-line Memory Modules). Memory modules are

an assembly of memory chips on a small board that plugs vertically onto a single socket on the

motherboard in order to occupy less space on the motherboard. And also allows for easy expansion by

replacement.

MEMORY SYSTEM CONSIDERATIONS

The choice of a RAM chip for a given application depends on several factors: Cost, speed,

power, size etc. SRAMs are faster, more expensive and smaller. In the case of DRAMs are slower,

cheaper and larger.

If speed is the primary requirement static RAMS are the most appropriate one. Static RAMs are

mostly used in cache memories. If cost is the prioritized factor then we are going for dynamic RAMs.

Dynamic RAMs are used for implementing computer main memories.

Refresh overhead:

All dynamic memories have to be refreshed. In DRAM, the period for refreshing all rows is

16ms whereas 64ms in SDRAM.

Eg: Suppose a SDRAM whose cells are in 8K (8192) rows; 4 clock cycles are needed to access

(read) each rows; then it takes 8192×4=32,768 cycles to refresh all rows; if the clock rate is 133 MHz,

then it takes 32,768/(133×10
-6

)=246×10
-6

 seconds; suppose the typical refreshing period is 64ms, then

the refresh overhead is 0.246/64=0.0038<0.4% of the total time available for accessing the memory.

Memory Controller

 Dynamic memory chips use multiplexed address inputs so that we can reduce the number of pins.

The address is divided into two parts and they are the High order address bits and Low order address

bits. The high order selects a row in the cell array and the low order address bits selects a column in the

 KTU - CST202 [Computer Organization and Architecture] Module: 5

cell array. The address selection is done under the control of RAS and CAS signal respectively for high

order and low order address bits.

READ ONLY MEMORY

SRAM and SDRAM chips are volatile: Lose the contents when the power is turned off.Many

applications need memory devices to retain contents after the power is turned off.

For example, computer is turned on; the operating system must be loaded from the diskinto the

memory. For this we need to store instructions which would load the OS from the disk that they will not

be lost after the power is turned off. So we need to store the instructions into a non-volatile memory.

Non-volatile memory is read in the same manner as volatile memory. The normal operation

involves only reading of data, this type of memory is called Read-Only memory (ROM). The data are

written into a ROM when it is manufactured and is permanent memory.

At Logic value „0‟: Transistor(T) is connected to the ground point(P). Transistor switch is closed

& voltage on bit line nearly drops to zero. At Logic value „1‟: Transistor switch is open. The bit line

remains at high voltage.

To read the state of the cell, the word line is activated. A Sense circuit at the end of the bit line

generates the proper output value.

Types of ROM

Different types of non-volatile memory are

 PROM

 EPROM

 EEPROM

 Flash Memory

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Programmable Read-Only Memory (PROM):

PROM allows the data to be loaded by the user. Programmability is achieved by inserting a

„fuse‟ at point P in a ROM cell. Before it is programmed, the memory contains all 0‟s. The user can

insert 1‟s at the required location by burning out the fuse at these locations using high-current pulse.

This process is irreversible.

The PROMs provides flexibility and faster data access. It is less expensive because they can be

programmed directly by the user.

Erasable Reprogrammable Read-Only Memory (EPROM):

EPROM allows the stored data to be erased and new data to be loaded. In an EPROM cell, a

connection to ground is always made at „P‟ and a special transistor is used, which has the ability to

function either as a normal transistor or as a disabled transistor that is always turned „off‟.

During programming, an electrical charge is trapped in an insulated gate region. The charge is

retained for more than 10 years because the charge has no leakage path. For erasing this charge, ultra-

violet light is passed through a quartz crystal window (lid). This exposure to ultra-violet light dissipates

the charge. During normal use, the quartz lid is sealed with a sticker.

EPROM can be erased by exposing it to ultra-violet light for duration of up to 40 minutes.

Usually, an EPROM eraser achieves this function.

Merits: It provides flexibility during the development phase of digital system. It is capable of

retaining the stored information for a long time.

Demerits: The chip must be physically removed from the circuit for reprogramming and its

entire contents are erased by UV light.

Electrically Erasable Programmable Read-Only Memory (EEPROM):

EEPROM is programmed and erased electrically. It can be erased and reprogrammed about ten

thousand times. Both erasing and programming take about 4 to 10 ms (millisecond). In EEPROM, any

location can be selectively erased and programmed. EEPROMs can be erased one byte at a time, rather

than erasing the entire chip. Hence, the process of reprogramming is flexible but slow.

Merits:It can be both programmed and erased electrically. It allows the erasing of all cell

contents selectively. Demerits:It requires different voltage for erasing ,writing and reading the stored

data.

Flash memory:

 Flash memory is a non-volatile memory chip used for storage and for transferring data between a

personal computer (PC) and digital devices. It has the ability to be electronically reprogrammed and

erased. It is often found in USB flash drives, MP3 players, digital cameras and solid-state drives.

Flash memory is a type of electronically erasable programmable read only memory (EEPROM),

but may also be a standalone memory storage device such as a USB drives. EEPROM is a type of data

memory device using an electronic device to erase or write digital data. Flash memory is a distinct type

of EEPROM, which is programmed and erased in large blocks.

Flash memory incorporates the use of floating-gate transistors to store data. Floating-gate

transistors, or floating gate MOSFET (FGMOS), is similar to MOSFET, which is a transistor used for

 KTU - CST202 [Computer Organization and Architecture] Module: 5

amplifying or switching electronic signals. Floating-gate transistors are electrically isolated and use a

floating node in direct current (DC). Flash memory is similar to the standard MOFSET, except the

transistor has two gates instead of one.

SPEED, SIZE AND COST

A big challenge in the design of a computer system is to

provide a sufficiently large memory, with a reasonable

speed at an affordable cost.

Static RAM: Very fast, but expensive, because a

basic SRAM cell has a complex circuit making it

impossible to pack a large number of cells onto a single chip.

 Dynamic RAM: Simpler basic cell circuit, hence are

much less expensive, but significantly slower than

SRAMs.

Magnetic disks: Storage provided by DRAMs is

higher than SRAMs, but is still less than what is

necessary. Secondary storage such as magnetic disks

provides a large amount of storage, but is much slower than

DRAMs.

CACHE MEMORIES

 Processor is much faster than the main memory. As a result, the processor has to spend much of

its time waiting while instructions and data are being fetched from the main memory. These create a

major obstacle towards achieving good performance. Speed of the main memory cannot be increased

beyond a certain point.

Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing

with high-speed CPU. Cache memory is costlier than main memory or disk memory but economical

than CPU registers. Cache memory is an extremely fast memory type that acts as a buffer between

RAM and the CPU. It holds frequently requested data and instructions so that they are immediately

available to the CPU when needed.

Cache memory is used to reduce the average time to access data from the Main memory. The

cache is a smaller and faster memory which stores copies of the data from frequently used main memory

locations. There are various different independent caches in a CPU, which store instructions and data.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Cache memory is based on the property of computer programs known as “locality of reference”.

Prefetching the data into cache before the processor needs it. It needs to predict processor future access

requirement [Locality of Reference].

Locality of Reference

Analysis of programs indicates that many instructions in localized areas of a program

areexecuted repeatedly during some period of time, while the others are accessed relatively less

frequently. These instructions may be the ones in a loop, nested loop or few procedures calling each

other repeatedly. This is called “locality of reference”.

Temporal locality of reference:

Recently executed instruction is likely to be executed again very soon.

Spatial locality of reference:

Instructions with addresses close to a recently instruction are likely to be executed soon.

Basic Cache Operations

Processor issues a Read request; a block of words is

transferred from the main memory to the cache, one word at a time.

Subsequent references to the data in this block of words are

found in the cache.

At any given time, only some blocks in the main

memory are held in the cache, which blocks in the main

memory in the cache is determined by a “mapping function”.

When the cache is full, and a block of words needs to be

transferred from the main memory, some block of words in the cache

must be replaced. This is determined by a “replacement algorithm”.

Cache hit

Existence of a cache is transparent to the processor. The processor issues Read and Write

requests in the same manner. If the data is in the cache, it is called a Read or Write hit.

Read hit: The data is obtained from the cache.

Write hit: Cache has a replicaof the contents of the main memory. Contents of the cache and the

main memory may be updated simultaneously.This is the write-through protocol. Update the contents

of the cache, and mark it as updated by setting a bit knownas the dirty bit or modified bit. The contents

of the main memory are updatedwhen this block is replaced. This is write-back or copy-back protocol.

Cache miss

If the data is not present in the cache, then a Read miss or Write miss occurs.

Read miss: Block of words containing this requested word is transferred from the memory. After

the block is transferred, the desired word is forwarded to the processor.The desired word may also be

forwarded to the processor as soon as it is transferred without waiting for the entire block to be

transferred. This is called load-through or earlyrestart.

Write-miss: Write-through protocol is used, and then the contents of the main memory are

 KTU - CST202 [Computer Organization and Architecture] Module: 5

updated directly. If write-back protocol is used, the block containing the addressed word is first brought

into the cache. The desired word is overwritten with new information.

MAPPING FUNCTIONS

The mapping functions are used to map a particular block of main memory to a particular block

of cache. This mapping function is used to transfer the block from main memory to cache memory.

Mapping functions determine how memory blocks are placed in the cache.

Three mapping functions:

 Direct mapping.

 Associative mapping.

 Set-associative mapping.

Direct Mapping

A particular block of main memory can be brought to a particular block of cache memory. So, it

is not flexible.

The simplest way of associating main memory

blocks with cache block is the direct mapping technique. In

this technique, block k of main memory maps into block k

modulo m of the cache, where m is the total number of

blocks in cache. In this example, the value of m is 128.

In direct mapping technique, one particular block of

main memory can be transferred to a particular block of

cache which is derived by modulo function.

Example:Block j of the main memory maps to j

modulo 128 of the cache. (ie) Block 0, 128, 256 of main

memory is maps to block 0 of cache memory.1,129,257

maps to 1, & so on.

More than one memory block is mapped onto the

same position in the cache. This may lead to contention for

cache blocks even if the cache is not full. Resolve the

contention by allowing new block to replace the old

block, leading to a trivial replacement algorithm.

Memory address is divided into three fields: Low

order 4 bits determine one of the 16 words in a block. When a new block is brought into the cache, the

next 7 bits determine whichcache block this new block is placed in. High order 5 bits determine which

of the possible32 blocks is currently presentin the cache. These are tag bits.

This mapping methodology is simple to implement but not very flexible.

Associative mapping

In the associative mapping technique, a main memory block can potentially reside in any cache

block position. In this case, the main memory address is divided into two groups, a low-order bit

identifies the location of a word within a block and a high-order bit identifies the block.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

In the example here, 11 bits are required to identify a main memory block when it is resident in

the cache , high-order 11 bits are used as TAG bits and low-order 5 bits are used to identify a word

within a block. The TAG bits of an address received from the CPU must be compared to the TAG bits

of each block of the cache to see if the desired block is present.

In the associative mapping, any block of main memory can go to any block of cache, so it has

got the complete flexibility and we have to use proper replacement policy to replace a block from cache

if the currently accessed block of main memory is not present in cache.

It might not be practical to use this complete flexibility of associative mapping technique due to

searching overhead, because the TAG field of main memory address has to be compared with the TAG

field of the entire cache block.

In this example, there are 128 blocks in cache and the size of TAG is 11 bits. The whole

arrangement of Associative Mapping Technique is shown in the figure below.

Set-Associative mapping

This mapping technique is intermediate to the previous two techniques. Blocks of the cache are

grouped into sets, and the mapping allows a block of main memory to reside in any block of a specific

set. Therefore, the flexibility of associative mapping is reduced from full freedom to a set of specific

blocks.

This also reduces the searching overhead, because the search is restricted to number of sets,

instead of number of blocks. Also the contention problem of the direct mapping is eased by having a

few choices for block replacement.

Consider the same cache memory and main memory organization of the previous example.

Organize the cache with 4 blocks in each set. The TAG field of associative mapping technique is

divided into two groups, one is termed as SET bit and the second one is termed as TAG bit. Each set

 KTU - CST202 [Computer Organization and Architecture] Module: 5

contains 4 blocks, total number of set is 32. The main memory address is grouped into three parts: low-

order 5 bits are used to identifies a word within a block. Since there are total 32 sets present, next 5 bits

are used to identify the set. High-order 6 bits are used as TAG bits.

Replacement Algorithms

 When the cache is full, there is a need for replacement algorithm for replacing the cache block

with a new block. For achieving the high-speed such types of the algorithm is implemented in hardware.

In the cache memory, there are three types of replacement algorithm are used that are:

 Random replacement policy.

 First in first Out (FIFO) replacement policy

 Least recently used (LRU) replacement policy.

Random replacement policy

This is a very simple algorithm which used to choose the block to be overwritten at random. In

this algorithm replace any cache line by using random selection. It is an algorithm which is simple and

has been found to be very effective in practice.

First in first out (FIFO)

In this algorithm replace the cache block which is having the longest time stamp. While using

this technique there is no need of updating when a hit occurs but when there is a miss occur then the

block is put into an empty block and the counter values are incremented by one.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

Least recently used (LRU)

In the LRU, replace the cache block which is having the less reference with the longest time

stamp. In this case also when a hit occurs when the counter value will be set to 0 but when the miss

occurs there will be arising of two possibilities in which one possibility is that counter value is set as 0

and in another possibility, the counter value can be incremented as 1.

CONTENT ADDRESSABLE MEMORY (CAM)/ ASSOCIATIVE MEMORY

Many data-processing applications require the search of items in a table stored in memory.

An assembler program searches the symbol address table in order to extract the symbol‟s binary

equivalent. An account number may be searched in a file to determine the holder‟s name and

account status.

The established way to search a table is to store all items where they can be addressed in

sequence. The search procedure is a strategy for choosing a sequence of addresses, reading the

content of memory at each address, and comparing the information read with the item being

searched until a match occurs. The number of accesses to memory depends on the location of the

 KTU - CST202 [Computer Organization and Architecture] Module: 5

item and the efficiency of the search algorithm.

The time required to find an item stored in memory can be reduced considerably if stored

data can be identified for access by the content of the data itself rather than by an address. A

memory unit accessed by content is called an associative memory or Content Addressable

Memory (CAM).

This type of memory is accessed simultaneously and in parallel on the basis of data content rather

than by specific address or location. When a word is written in an associative memory, no address

is given. The memory is capable of finding an empty unused location to store the word. When a

word is to be read from an associative memory, the content of the word, or part of the word, is

specified.

The memory locaters all words which match the specified content and marks them for

reading. Because of its organization, the associative memory is uniquely suited to do parallel searches

by data association.An associative memory is more expensive then a random access memory because

each cell must have storage capability as well as logic circuits for matching its content with an

external argument.For this reason, associative memories are used in applications where the search

time is very critical and must be very short.

 HARDWARE ORGANIZATION

The block diagram of an associative memory consists of a memory array and logic from

words with n bits per word. The argument register A and key register K each have n bits, one for

each bit of a word.

Block Diagram of Associative Memory

 KTU - CST202 [Computer Organization and Architecture] Module: 5

The match register M has m bits, one for each memory word. Each word in memory is

compared in parallel with the content of the argument register.

The words that match the bits of the argument register set a corresponding bit in the match register.

After the matching process, those bits in the match register that have been set indicate the fact that

their corresponding words have been matched. Reading is accomplished by a sequential access to

memory for those words whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in the argument word.

The entire argument is compared with each memory word if the key register contains all 1‟s.

Otherwise, only those bits in the argument that have 1‟s in their corresponding position of the key

register are compared. Thus the key provides a mask or identifying piece of information which

specifies how the reference to memory is made.

To illustrate with a numerical example, suppose that the argument register A and the key register K

have the bit configuration shown below. Only the three leftmost bits of A are compared with

memory words because K has 1‟s in these positions.

Word 2 matches the unmasked argument field because the three leftmost bits of the argument and

the word are equal.

The relation between the memory array and external registers in an associative memory is

shown in below figure.

 KTU - CST202 [Computer Organization and Architecture] Module: 5

The cells in the array are marked by the letter C with two subscripts. The first subscript

gives the word number and the second specifies the bit position in the word. Thus cell Cij is the cell

for bit j in word i. A bit A j in the argument register is compared with all the bits in column j of the

array provided that K j =1. This is done for all columns j = 1, 2,…,n. If a match occurs between all

the unmasked bits of the argument and the bits in word i, the corresponding bit Mi in the match

register is set to 1.

If one or more unmasked bits of the argument and the word do not match, Mi is cleared to 0.

Flop storage element Fij and the circuits for reading, writing, and matching the cell. The input bit

is transferred into the storage cell during a write operation. The bit stored is read out during a read

operation. The match logic compares the content of the storage cell with the corresponding

unmasked bit of the argument and provides an output for the decision logic that sets the bit in Mi.

READ OPERATION

The matched words are read in sequence by applying a read signal to each word line whose

corresponding Mi bit is a 1. In most applications, the associative memory stores a table with no

two identical items under a given key. In this case, only one word may match the unmasked

argument field. By connecting output Mi directly to the read line in the same word position (instead

of the M register), the content of the matched word will be presented automatically at the output lines

 KTU - CST202 [Computer Organization and Architecture] Module: 5

and no special read command signal is needed. Furthermore, if we exclude words having a zero

content, an all-zero output will indicate that no match occurred and that the searched item is not

available in memory.

 WRITE OPERATION

If the entire memory is loaded with new information at once prior to a search operation then

the writing can be done by addressing each location in sequence. This will make the device a

random-access memory for writing and a content addressable memory for reading. The advantage

here is that the address for input can be decoded as in a random-access memory. Thus instead of

having m address lines, one for each word in memory, the number of address lines can be reduced by

the decoder to d lines, where m = 2
d
.

If unwanted words have to be deleted and new words inserted one at a time, there is a need

for a special register to distinguish between active and inactive words. This register, sometimes

called a tag register, would have as many bits as there are words in the memory. For every active

word stored in memory, the corresponding bit in the tag register is set to 1. A word is deleted from

memory by clearing its tag bit to 0. Words are stored in memory by scanning the tag register until

the first 0 bit is encountered. This gives the first available inactive word and a position for

writing a new word. After the new word is stored in memory it is made active by setting its tag bit

to 1. An unwanted word when deleted from memory can be cleared to all 0‟s if this value is used to

specify an empty location.

CONTENT BEYOND SYLLABUS

Von Neumann architecture

Historically there have been 2 types of Computers:

1. Fixed Program Computers – Their function is very specific and they couldn’t be

programmed, e.g. Calculators.

2. Stored Program Computers – These can be programmed to carry out many different

tasks, applications are stored on them, hence the name.

The modern computers are based on a stored-program concept introduced by John Von

Neumann. In this stored-program concept, programs and data are stored in a separate storage

unit called memories and are treated the same. This novel idea meant that a computer built

with this architecture would be much easier to reprogram.

The basic structure is like,

It is also known as IAS computer and is having three basic units:

1. The Central Processing Unit (CPU)

2. The Main Memory Unit

3. The Input/Output Device

Let’s consider them in details.

 Control Unit –

A control unit (CU) handles all processor control signals. It directs all input and output

flow, fetches code for instructions, and controls how data moves around the system.

 Arithmetic and Logic Unit (ALU) –

The arithmetic logic unit is that part of the CPU that handles all the calculations the CPU

may need, e.g. Addition, Subtraction, Comparisons. It performs Logical Operations, Bit

Shifting Operations, and Arithmetic operations.

Figure – Basic CPU structure, illustrating ALU

 Main Memory Unit (Registers) –

1. Accumulator: Stores the results of calculations made by ALU.

2. Program Counter (PC): Keeps track of the memory location of the next instructions to

be dealt with. The PC then passes this next address to Memory Address Register

(MAR).

3. Memory Address Register (MAR): It stores the memory locations of instructions that

need to be fetched from memory or stored into memory.

4. Memory Data Register (MDR): It stores instructions fetched from memory or any

data that is to be transferred to, and stored in, memory.

5. Current Instruction Register (CIR): It stores the most recently fetched instructions

while it is waiting to be coded and executed.

6. Instruction Buffer Register (IBR): The instruction that is not to be executed

immediately is placed in the instruction buffer register IBR.

 Input/Output Devices – Program or data is read into main memory from the input

device or secondary storage under the control of CPU input instruction. Output devices are

used to output the information from a computer. If some results are evaluated by computer

and it is stored in the computer, then with the help of output devices, we can present them

to the user.

 Buses – Data is transmitted from one part of a computer to another, connecting all major

internal components to the CPU and memory, by the means of Buses. Types:

1. Data Bus: It carries data among the memory unit, the I/O devices, and the processor.

2. Address Bus: It carries the address of data (not the actual data) between memory and

processor.

3. Control Bus: It carries control commands from the CPU (and status signals from other

devices) in order to control and coordinate all the activities within the computer.

Von Neumann bottleneck –

Whatever we do to enhance performance, we cannot get away from the fact that instructions

can only be done one at a time and can only be carried out sequentially. Both of these factors

hold back the competence of the CPU. This is commonly referred to as the ‘Von Neumann

bottleneck’. We can provide a Von Neumann processor with more cache, more RAM, or faster

components but if original gains are to be made in CPU performance then an influential

inspection needs to take place of CPU configuration.

This architecture is very important and is used in our PCs and even in Super Computers.

Computer Organization and Architecture | Pipelining

To improve the performance of a CPU we have two options:

1) Improve the hardware by introducing faster circuits.

2) Arrange the hardware such that more than one operation can be performed at the same time.

Since, there is a limit on the speed of hardware and the cost of faster circuits is quite high, we

have to adopt the 2
nd

 option.

Pipelining : Pipelining is a process of arrangement of hardware elements of the CPU such that

its overall performance is increased. Simultaneous execution of more than one instruction takes

place in a pipelined processor.

Let us see a real life example that works on the concept of pipelined operation. Consider a

water bottle packaging plant. Let there be 3 stages that a bottle should pass through, Inserting

the bottle(I), Filling water in the bottle(F), and Sealing the bottle(S). Let us consider these

stages as stage 1, stage 2 and stage 3 respectively. Let each stage take 1 minute to complete its

operation.

Now, in a non pipelined operation, a bottle is first inserted in the plant, after 1 minute it is

moved to stage 2 where water is filled. Now, in stage 1 nothing is happening. Similarly, when

the bottle moves to stage 3, both stage 1 and stage 2 are idle. But in pipelined operation, when

the bottle is in stage 2, another bottle can be loaded at stage 1. Similarly, when the bottle is in

stage 3, there can be one bottle each in stage 1 and stage 2. So, after each minute, we get a new

bottle at the end of stage 3. Hence, the average time taken to manufacture 1 bottle is :

Without pipelining = 9/3 minutes = 3m

I F S | | | | | |

| | | I F S | | |

| | | | | | I F S (9 minutes)

With pipelining = 5/3 minutes = 1.67m

I F S | |

| I F S |

| | I F S (5 minutes)

Thus, pipelined operation increases the efficiency of a system.

Design of a basic pipeline
 In a pipelined processor, a pipeline has two ends, the input end and the output end.

Between these ends, there are multiple stages/segments such that output of one stage is

connected to input of next stage and each stage performs a specific operation.

 Interface registers are used to hold the intermediate output between two stages. These

interface registers are also called latch or buffer.

 All the stages in the pipeline along with the interface registers are controlled by a common

clock.

Execution in a pipelined processor
Execution sequence of instructions in a pipelined processor can be visualized using a space-

time diagram. For example, consider a processor having 4 stages and let there be 2 instructions

to be executed. We can visualize the execution sequence through the following space-time

diagrams:

Non overlapped execution:

Stage / Cycle 1 2 3 4 5 6 7 8

S1 I1

I2

S2

I1

I2

S3

I1

I2

S4

I1

I2

Total time = 8 Cycle

Overlapped execution:

Stage / Cycle 1 2 3 4 5

S1 I1 I2

S2

I1 I2

S3

I1 I2

S4

I1 I2

Total time = 5 Cycle

Pipeline Stages
RISC processor has 5 stage instruction pipeline to execute all the instructions in the RISC

instruction set. Following are the 5 stages of RISC pipeline with their respective operations:

 Stage 1 (Instruction Fetch)
In this stage the CPU reads instructions from the address in the memory whose value is

present in the program counter.

 Stage 2 (Instruction Decode)
In this stage, instruction is decoded and the register file is accessed to get the values from

the registers used in the instruction.

 Stage 3 (Instruction Execute)
In this stage, ALU operations are performed.

 Stage 4 (Memory Access)
In this stage, memory operands are read and written from/to the memory that is present in

the instruction.

 Stage 5 (Write Back)
In this stage, computed/fetched value is written back to the register present in the

instructions.

Performance of a pipelined processor
Consider a ‘k’ segment pipeline with clock cycle time as ‘Tp’. Let there be ‘n’ tasks to be

completed in the pipelined processor. Now, the first instruction is going to take ‘k’ cycles to

come out of the pipeline but the other ‘n – 1’ instructions will take only ‘1’ cycle each, i.e, a

total of ‘n – 1’ cycles. So, time taken to execute ‘n’ instructions in a pipelined processor:

 ETpipeline = k + n – 1 cycles

 = (k + n – 1) Tp

In the same case, for a non-pipelined processor, execution time of ‘n’ instructions will be:

 ETnon-pipeline = n * k * Tp

So, speedup (S) of the pipelined processor over non-pipelined processor, when ‘n’ tasks are

executed on the same processor is:

 S = Performance of pipelined processor /

 Performance of Non-pipelined processor

As the performance of a processor is inversely proportional to the execution time, we have,

 S = ETnon-pipeline / ETpipeline

 => S = [n * k * Tp] / [(k + n – 1) * Tp]

 S = [n * k] / [k + n – 1]

When the number of tasks ‘n’ are significantly larger than k, that is, n >> k

 S = n * k / n

 S = k

where ‘k’ are the number of stages in the pipeline.

Also, Efficiency = Given speed up / Max speed up = S / Smax

We know that, Smax = k

So, Efficiency = S / k

Throughput = Number of instructions / Total time to complete the instructions

So, Throughput = n / (k + n – 1) * Tp

Systems I: Computer
Organization and Architecture

Lecture 10: Microprogrammed
Control

Microprogramming

• The control unit is responsible for initiating
the sequence of microoperations that
comprise instructions.
– When these control signals are generated by

hardware, the control unit is hardwired .
– When these control signals originate in data

stored in a special unit and constitute a program
on the small scale, the control unit is
microprogrammed .

Control memory

• The control function specifying a microoperation is a
binary variable whose active state could be either 1 or 0.
– In the variable’s active state, the microoperation is

executed.
– The string of control variables which control the

sequence of microoperations is called a control word.
• The microoperations specified in a control word is called a

microinstruction.
– Each microinstruction specifies one or more

microoperations that is performed.
• The control unit coordinates stores microinstruction in its

own memory (usually ROM) and performed the necessary
steps to execute the sequences of microinstructions (called
microprograms).

The Microprogrammed Control Unit

• In a microprogrammed processor, the
control unit consists of:
– Control address register – contains the address

of the next microinstruction to be executed.
– Control data register – contains the

microinstruction to be executed.
– The sequencer – determines the next address

from within control memory
– Control memory – where microinstructions are

stored.

Microprogrammed Control Organization

External
input Next -address

generator
(sequencer)

Control
address
register

Control
Memory
(ROM)

Control
data
register

Control
word

Next -address information

Sequencer

• The sequencer generates a new address by:
– incrementing the CAR
– loading the CAR with an address from control

memory.
– transferring an external address

or
– loading an initial address to start the control

operations.

Address Sequencing

• Microinstructions are usually stored in groups
where each group specifies a routine, where each
routine specifies how to carry out an instruction.

• Each routine must be able to branch to the
next routine in the sequence.

• An initial address is loaded into the CAR when
power is turned on; this is usually the address of
the first microinstruction in the instruction fetch
routine.

• Next, the control unit must determine the effective
address of the instruction.

Mapping
• The next step is to generate the microoperations

that executed the instruction.
– This involves taking the instruction’s opcode

and transforming it into an address for the the
instruction’s microprogram in control memory.
This process is called mapping.

– While microinstruction sequences are usually
determined by incrementing the CAR, this is
not always the case. If the processor’s control
unit can support subroutines in a microprogram,
it will need an external register for storing
return addresses.

Addressing Sequencing (continued)

• When instruction execution is finished, control must be
return to the fetch routine. This is done using an
unconditional branch.

• Addressing sequencing capabilities of control memory
include:
– Incrementing the CAR
– Unconditional and conditional branching (depending

on status bit).
– Mapping instruction bits into control memory

addresses
– Handling subroutine calls and returns.

Selection Of Address For Control Memory

Instruction Code

Mapping
Logic

Multiplexers

Control Address Register
(CAR)

Control Memory

Branch
Logic

Subroutine
Register
(SBR)

Incrementer

MUX
select

Status
bits

Select a
status bit

Branch address

Microoperations

Clock

subroutine return

ext addr. next microop

cond &
uncond.
bran.

Conditional Branching

• Status bits
– provide parameter information such as the

carry-out from the adder, sign of a number,
mode bits of an instruction, etc.

– control the conditional branch decisions made
by the branch logic together with the field in
the microinstruction that specifies a branch
address.

Branch Logic
• Branch Logic - may be implemented in one of several

ways:
– The simplest way is to test the specified condition and

branch if the condition is true; else increment the
address register.

– This is implemented using a multiplexer:
• If the status bit is one of eight status bits, it is

indicated by a 3-bit select number.
• If the select status bit is 1, the output is 0; else it is 0.
• A 1 generates the control signal for the branch; a 0

generates the signal to increment the CAR.
• Unconditional branching occurs by fixing the status bit as

always being 1.

Mapping of Instruction

• Branching to the first word of a
microprogram is a special type of branch.
The branch is indicated by the opcode of the
instruction.

• The mapping scheme shown in the figure
allows for four microinstruction as well as
overflow space from 1000000 to 1111111.

Mapping From Instruction Code To
Microoperation Address

1 0 1 1 address

0 1 0 1 1 0 0

Mapping bits:
0 x x x x 0 0

Microinstruction
addresss:

Subroutines

• Subroutine calls are a special type of
branch where we return to one
instruction below the calling
instruction.
– Provision must be made to save the return

address, since it cannot be written into
ROM.

Computer Hardware Configuration

MUX

AR

10 0

PC

10 0

Memory
2048 x 16

MUX

DR

15 0

AC

15 0

ALSU

CAR

6 0

SBR

6 0

Control memory
128 x 20

Computer Instructions

I Opcode Address

10 0111415

AC ← M[EA],
M[EA]← AC

0011EXCHANGE

M[EA] ← AC0010STORE

IF (AC > 0)

THEN PC ← EA

0001BRANCH

AC← AC + M[EA]0000ADD

DescriptionOpcodeSymbol

Microinstruction Code Format (20 bits)

F2F1 F3 CD BR AD

F1, F2, F3 : Microoperation Field

CD: Condition For Branching

BR: Branch Field

AD: Address Field

Symbols and Binary Code For
Microinstruction Fields

WRITEM[AR] ← DR111

PCTARAR ← PC110

DRTARAR ← DR(0-10)101

DRTACAC ← DR100

INCACAC ← AC + 1011

CLRACAC ← 0010

ADDAC ← AC + DR001

NOPNone000

SymbolMicrooperationF1

Symbols and Binary Code For
Microinstruction Fields (continued)

PCTDRDR(0-10) ← PC111

INCDRDR ← DR + 1110

ACTDRDR ← AC101

READDR ← M[AR]100

ANDAC ← AC ∧ DR011

ORAC ← AC ∨ DR010

SUBAC ← AC- DR001

NOPNone000

SymbolMicrooperationF2

Symbols and Binary Code For
Microinstruction Fields (continued)

Reserved111

ARTPCPC ← AR110

INCPCPC ← PC + 1101

SHRAC ← shr AC100

SHLAC ← shl AC011

COMAC ← AC’010

XORAC ← AC ⊕ DR001

NOPNone000

SymbolMicrooperationF3

Symbols and Binary Code For
Microinstruction Fields (continued)

Zero value in ACZAC = 011

Sign bit of ACSAC(15)10

Indirect Address
bit

IDR(15)01

Unconditional
Branch

UAlways = 100

CommentsSymbolConditionCD

Symbols and Binary Code For Microinstruction
Fields (continued)

CAR(2-5) ← DR(11-14), CAR(0, 1, 6) ← 0MAP11

CAR ← SBR (return from subroutine)RET10

CAR ←AR, SBR ← CAR + 1 if cond. = 1
CAR←CAR + 1 if condition = 0

CAL01

CAR ←AR if condition = 1
CAR←CAR + 1 if condition = 0

JMP00

FunctionSymbolBR

Symbolic Microinstructions

• It is possible to create a symbolic language for microcode that is
machine-translatable to binary code.

• Each line define a symbolic microinstruction with each column
defining one of five fields:
– Label - Either blank or a name followed by a colon (indicates a

potential branch)
– Microoperations - One, Two, Three Symbols, separated by

commas (indicates that the microoperation being performed)
– CD - Either U, I, S or Z (indicates condition)
– BR - One of four two-bit numbers
– AD - A Symbolic Address, NEXT (address), RET, MAP (both of

these last two converted to zeros by the assembler) (indicates the
address of the next microinstruction)

• We will use the pseudoinstruction ORG to define the first instruction
(or origin) of a microprogram, e.g., ORG 64 begins at 1000000.

Partial Symbolic Microprogram

Label Microoperations CD BR AD
ORG 0

ADD: NOP I CALL INDRCT
READ U JMP NEXT
ADD U JMP FETCH

ORG 4
BRANCH: NOP S JMP OVER

NOP U JMP FETCH
OVER: NOP I CALL INDRCT

ARTPC U JMP FETCH

ORG 8
STORE: NOP I CALL INDRCT

ACTDR U JMP NEXT
WRITE U JMP FETCH

Partial Symbolic MicroProgram (continued)

ORG 12
EXCHANGE: NOP I CALL INDRCT

READ U JMP NEXT
ARTDR, DRTACU JMP NEXT
WRITE U JMP FETCH

ORG 64
FETCH: PCTAR U JMP NEXT

READ, INCPC U JMP NEXT
DRTAC U MAP

INDRCT: READ U JMP NEXT
DRTAC U RET

Partial Binary Microprogram

Micro-
Rout ine Decimal Binary F 1 F 2 F 3 C D B R AD
ADD 0 0000000 000 000 000 0 1 01 1000011

1 0000001 000 100 000 0 0 00 0000010
2 0000010 001 000 000 0 0 00 1000000
3 0000011 000 000 000 0 0 00 1000000

BRANCH 4 0000100 000 000 000 1 0 00 0000110
5 0000101 000 000 000 0 0 00 1000000
6 0000110 000 000 000 0 1 01 1000011
7 0000111 000 000 110 0 0 00 1000000

S T O R E 8 0001000 000 000 000 0 1 01 1000011
9 0001001 000 101 000 0 0 00 0001010

10 0001010 111 000 000 0 0 00 1000000
11 0001011 000 000 000 0 0 00 1000000

E X C H A N G E 12 0001100 000 000 000 0 1 01 1000011
13 0001101 001 000 000 0 0 00 0001110
14 0001110 100 101 000 0 0 00 0001111
15 0001111 111 000 000 0 0 00 1000000

FETCH 64 1000000 000 000 000 0 0 00 1000001
65 1000001 000 100 000 0 0 00 1000010
66 1000010 000 000 000 0 0 11 0000000

INDRCT 67 1000011 000 100 000 0 0 00 1000100
68 1000100 000 000 000 0 0 10 0000000

Address Binary Microinstruct ion

Control Unit Design

• Each field of k bits allows for 2k

microoperations.
• The number of control bits can be reduced

by grouping mutually exclusive
microoperations together.

• Each field requires its own decoder to
produce the necessary control signals.

Decoding of Microoperation Fields

3 x 8 decoder

7 6 5 4 3 2 1 0

3 x 8 decoder

7 6 5 4 3 2 1 0

3 x 8 decoder

7 6 5 4 3 2 1 0

ALSU

AC

Multiplexers

AR

From
PC

From
DR(0-10)

Load

10Select Load

AND
ADD

DRTAC

D
R

T
A

R

PC
T

A
R

Clock

F1 F2 F3

Microprogram Sequencer

• The microprogram sequencer selects the next
address in control memory from which a
microinstruction is to be fetched.

• Depending on the condition and on the branching
type, it will be:
– an external (mapped) address
– the next microinstruction
– a return from a subroutine
– the address indicated in the microinstruction.

Microprogram Sequencer For A Control Memory

Input
Logic

I0
I1
T

3 2 1 0
S1
S0

MUX1 SBR

External
(MAP)

Incrementer

CARClock

L

MUX2
Select

1
I
S
Z

Test

Control memory

Microops CD BR AD

Input Logic Truth Table For A
Microprogrammed Sequencer

011x1111

001x0101

11011010

00001010

01010000

00000000

LS0S1TI0I1

BR Field Input MUX 1 Load SBR

Next address

Specified addr.

Subroutine ret.

Ext. addr.

 Name

Reg. No.

NEHRU COLLEGE OF ENGINEERING AND RESEARCH

CENTRE

(NAAC Accredited)

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University,

Kerala)

SERIES TEST - 1 (2020-21)

Semester:IV Programme: B.TECH Max.Mark:30 Date:

Course Code & Name: CST 202 Computer

Organization and Architecture

Duration:90 min SET : 1

Knowledge Level (KL) K1 : Remembering K3:Applying K5:Creating

Course Outcome(COL) K2: Understanding K4: Analysing K6:Evaluation

PART-A

Answer ALL Questions (3 x 3 = 9 Marks)

1. List out Memory Operations. K4/CO1

2. Define Memory Addressability? Classify different addressing

modes.

K4,K6/CO1

3. Explain Status Registers. K6/CO2

PART- B

Answer ALL Questions (3 x 7 = 21Marks)

4 a. Differentiate between Big endian and Little endian addressing

5 Marks

K2/CO1

b. List different instruction types. 2 Marks K4/CO1

 OR

 5 Explain single bus organization with neat diagram. 7 Marks K6/CO1

6 Write short notes on Register transfer logic. 7 Marks K4/CO2

 OR

 7 Explain Design of Logic Circuits 7 Marks K6/CO2

OR

8 Explain restoring method of Division 7 Marks K2/CO3

 OR

9 Design 2x3 multiplier 7 Marks K2/CO3

 Name

Reg. No.

 Question paper quality assessment using Blooms taxonomy

RUBRICS

Blooms taxonomy

Definitions
Scale

Remembering 1

Understanding 2

Applying 3

Analyzing 4

Evaluating 5

Creating 6

Questions to Blooms taxonomy mapping

Qn No. Marks Remembering Understanding Applying Analyzing Evaluating Creating

1 3 

2 3 

3 3 

4 a 5



4 b 2 

5 7 

 Name

Reg. No.

6 7 

7 7 

8 7 

9 7 

EVALUATION OF QUALITY OF QUESTION PAPER USING BLOOMS

TAXONOMY

Blooms taxonomy

definitions
Scale Marks

Rating

(out of 6)

Remembering 1 5

3.90

Understanding 2 10

Applying 3

Analyzing 4 5

Evaluating 5 28

Creating 6 3

CO MAPPING WITH QUESTIONS

Cos T1 T2 T3 A1 A2

CST201.1
Q(1),Q(2)

Q(4),Q(5)

CST201.2
Q(3),Q(6),Q(7)

CST201.3
Q(8),Q(9)

 Name

Reg. No.

CST201.4

CST201.5

APPROVED BY

MODULE CO-ORDINATOR SCRUTINY COMMITTEE HOD

